Sanne de Bruin
169 Storage of RBCs in PAGGGM improves metabolism after transfusion but has no effect on PTR 16. Nemkov T, Sun K, Reisz JA, et al. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage. Haematologica . 2018;103(2):361-372. doi:10.3324/haematol.2017.178608 17. Thomas T, Cendali F, Fu X, et al. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion . 2021;61(6):1867-1883. doi:10.1111/trf.16402 18. Burger P, Korsten H, De Korte D, Rombout E, Van Bruggen R, Verhoeven AJ. An improved red blood cell additive solution maintains 2,3-diphosphoglycerate and adenosine triphosphate levels by an enhancing effect on phosphofructokinase activity during cold storage. Transfusion . 2010;50(11):2386- 2392. doi:10.1111/j.1537-2995.2010.02700.x 19. D’Alessandro A, Nemkov T, Hansen KC, Szczepiorkowski ZM, Dumont LJ. Red blood cell storage in additive solution-7 preserves energy and redox metabolism: Ametabolomics approach. Transfusion . 2015;55(12):2955-2966. doi:10.1111/trf.13253 20. de Back DZ, Vlaar R, Beuger B, et al. A method for red blood cell biotinylation in a closed system. Transfusion . 2018;58(4):896-904. doi:10.1111/trf.14535 21. Shah SS, Diakite SAS, Traore K, et al. A novel cytofluorometric assay for the detection and quantification of glucose-6-phosphate dehydrogenase deficiency. Sci Rep . 2012;2:299. doi:10.1038/ srep00299 22. D’Alessandro A, Fu X, Kanias T, et al. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica . 2021;106(5):1290-1302. doi:10.3324/ haematol.2020.246603 23. Nemkov T, Stefanoni D, Bordbar A, et al. Blood donor exposome and impact of common drugs on red blood cell metabolism. JCI insight . 2021;6(3). doi:10.1172/jci.insight.146175 24. Stefanoni D, Shin HKH, Baek JH, et al. Red blood cell metabolism in Rhesus macaques and humans: comparative biology of blood storage. Haematologica . 2020;105(8):2174-2186. doi:10.3324/ haematol.2019.229930 25. Reisz JA, Zheng C, D’Alessandro A, Nemkov T. Untargeted and Semi-targeted Lipid Analysis of Biological Samples Using Mass Spectrometry-Based Metabolomics. Methods Mol Biol . 2019;1978:121- 135. doi:10.1007/978-1-4939-9236-2_8 26. Nemkov T, Reisz JA, Gehrke S, Hansen KC, D’Alessandro A. High-Throughput Metabolomics: Isocratic and Gradient Mass Spectrometry-BasedMethods. Methods Mol Biol . 2019;1978:13-26. doi:10.1007/978- 1-4939-9236-2_2 27. Nemkov T, Hansen KC, D’Alessandro A. A three-minute method for high-throughput quantitative metabolomics and quantitative tracing experiments of central carbon and nitrogen pathways. Rapid Commun Mass Spectrom . 2017;31(8):663-673. doi:10.1002/rcm.7834 28. Piagnerelli M, Boudjeltia KZ, Brohee D, et al. Alterations of red blood cell shape and sialic acid membrane content in septic patients. Crit Care Med . 2003;31(8):2156-2162. doi:10.1097/01. CCM.0000079608.00875.14 29. Baskurt OK, Gelmont D, Meiselman HJ. Red blood cell deformability in sepsis. Am J Respir Crit Care Med . 1998;157(2):421-427. doi:10.1164/ajrccm.157.2.9611103 30. Peters AL, Beuger B, Mock DM, et al. Clearance of stored red blood cells is not increased compared with fresh red blood cells in a human endotoxemia model. Transfusion . 2016;56(6):1362-1369. doi:10.1111/trf.13595 6
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0