Aernoud Fiolet

283 Colchicine reduces extracellular vesicle NLRP3 inflammasome protein levels REFERENCES 1. R. Ross, Atherosclerosis — An Inflammatory Disease, N. Engl. J. Med. 340 (1999) 115–126. 2. P. Libby, J. Loscalzo, P.M. Ridker, M.E. Farkouh, P.Y. Hsue, et al. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week, J. Am. Coll. Cardiol. 72 (2018) 2071–2081. 3. P.M. Ridker, B.M. Everett, T. Thuren, J.G. MacFadyen, W.H. Chang, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease, N. Engl. J. Med. 377 (2017) 1119–1131. 4. J.-C. Tardif, S. Kouz, D.D. Waters, O.F. Bertrand, R. Diaz, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction, N. Engl. J. Med. 381 (2019) 2497–2505. 5. S.M. Nidorf, A.T.L. Fiolet, A. Mosterd, J.W. Eikelboom, A. Schut, et al. Colchicine in Patients with Chronic Coronary Disease, N. Engl. J. Med. 383 (2020) 1838–1847. 6. F. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, J. Tschopp. Gout-associated uric acid crystals activate the NALP3 inflammasome, Nature. 440 (2006) 237–241. 7. G.J. Martínez, D.S. Celermajer, S. Patel. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation, Atherosclerosis. 269 (2018) 262– 271. 8. M.J.M. Silvis, E.J. Demkes, A.T.L. Fiolet, M. Dekker, L. Bosch, et al. Immunomodulation of the NLRP3 Inflammasome in Atherosclerosis, Coronary Artery Disease, and Acute Myocardial Infarction, J. Cardiovasc. Transl. Res. 14 (2020) 23-34. 9. A. Grebe, F. Hoss, E. Latz. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis, Circ. Res. 122 (2018) 1722–1740.. 10. K. V. Swanson, M. Deng, J.P.Y. Ting. The NLRP3 inflammasome: molecular activation and regulation to therapeutics, Nat. Rev. Immunol. 19 (2019) 477–489. 11. Z. Mallat, A. Corbaz, A. Scoazec, S. Besnard, G. Lesèche, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability, Circulation. 104 (2001) 1598– 1603. 12. P. Libby. Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond, J. Am. Coll. Cardiol. 70 (2017) 2278–2289. 13. I.S. Afonina, C. Müller, S.J. Martin, R. Beyaert. Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme, Immunity. 42 (2015) 991–1004. 14. P.M. Ridker. Targeting Interleukin-1 and Interleukin-6: The Time Has Come to Aggressively Address Residual Inflammatory Risk, J. Am. Coll. Cardiol. 76 (2020) 1774–1776. 15. P. Broz, V.M. Dixit. Inflammasomes: Mechanism of assembly, regulation and signalling, Nat. Rev. Immunol. 16 (2016) 407–420. 16. S. Lipinski, S. Pfeuffer, P. Arnold, C. Treitz, K. Aden, et al. Prdx4 limits caspase‐1 activation and restricts inflammasome‐mediated signaling by extracellular vesicles, EMBOJ. 38 (2019) e101266.. 17. J.G. Wang, J.C. Williams, B.K. Davis, K. Jacobson, C.M. Doerschuk, et al. Monocytic microparticles activate endothelial cells in an IL-1 β -dependent manner, Blood. 118 (2011) 2366–2374. 18. C.M. Boulanger, X. Loyer, P.E. Rautou, N. Amabile. Extracellular vesicles in coronary artery disease, Nat. Rev. Cardiol. 14 (2017) 259–272. 19. J.P.G. Sluijter, S.M. Davidson, C.M. Boulanger, E.I. Buzás, D.P.V. De Kleijn, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology, Cardiovasc. Res. 114 (2018) 19–34.

RkJQdWJsaXNoZXIy ODAyMDc0