Aernoud Fiolet

285 Colchicine reduces extracellular vesicle NLRP3 inflammasome protein levels 37. P. Cirillo,V.Taglialatela, G. Pellegrino,A.Morello, S. Conte, L. Di Serafino, et al. Effects of colchicine on platelet aggregation in patients on dual antiplatelet therapy with aspirin and clopidogrel, J. Thromb. Thrombolysis. 50 (2020) 468–472. 38. M. Palviainen, M. Saraswat, Z. Varga, D. Kitka, M. Neuvonen, M. Puhka, et al. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—Implications for biomarker discovery, PLoS One. 15 (2020) e0236439. 39. A. Baroja-Mazo, F. Martín-Sánchez, A.I. Gomez, C.M. Martínez, J. Amores-Iniesta, V. Compan, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response, Nat. Immunol. (2014). 40. Y. Zhang, F. Liu, Y. Yuan, C. Jin, C. Chang, Y. Zhu, et al. Inflammasome-Derived Exosomes Activate NF- κ B Signaling in Macrophages, J. Proteome Res. 16 (2017) 170–178. 41. P.M. Ridker, J.G. MacFadyen, T. Thuren, P. Libby, et al. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1 β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis, Eur. Heart J. 41 (2020) 2153–2163. 42. A. Abbate, S. Toldo, C. Marchetti, J. Kron, B.W. Van Tassell, et al. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease, Circ. Res. (2020) 1260–1280. 43. M. Satoh, T. Tabuchi, T. Itoh, M. Nakamura. NLRP3 inflammasome activation in coronary artery disease: Results from prospective and randomized study of treatment with atorvastatin or rosuvastatin, Clin. Sci. 126 (2014) 233–241. 44. L. Wang, P. Qu, J. Zhao, Y. Chang. NLRP3 and downstream cytokine expression elevated in the monocytes of patients with coronary artery disease, Arch. Med. Sci. 10 (2014) 791–800. S. Kaptoge, E. Di Angelantonio, G. Lowe, M.B. Pepys, S.G. Thompson, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis, Lancet. 375 (2010) 132–140. 45. D.I. Swerdlow, M. V. Holmes, K.B. Kuchenbaecker, J.E.L. Engmann, T. Shah, et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: Amendelian randomisation analysis, Lancet. 379 (2012) 1214–1224. 46. P.M. Ridker, J.G. MacFadyen, B.M. Everett, P. Libby, T. Thuren, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial, Lancet. 391 (2018) 319–328. 47. P.M. Ridker, P. Libby, J.G. MacFadyen, T. Thuren, C. Ballantyne, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: Analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS), Eur. Heart J. (2018) 3499-3507. 48. A.T.L. Fiolet, M.J.M. Silvis, T.S.J. Opstal, W.A. Bax, F.A.L. van der Horst, et al. Short-term effect of low-dose colchicine on inflammatory biomarkers, lipids, blood count and renal function in chronic coronary artery disease and elevated high-sensitivity C-reactive protein, PLoS One. 15 (2020) e0237665. 49. T.S.J. Opstal, R.M. Hoogeveen, A.T.L. Fiolet, M.J.M. Silvis, S.H.K. The, et al. Colchicine Attenuates Inflammation Beyond the Inflammasome in Chronic Coronary Artery Disease, Circulation. 142 (2020) 1996–1998.

RkJQdWJsaXNoZXIy ODAyMDc0