Aernoud Fiolet

67 Viewing Atherosclerosis through a Crystal Lens REFERENCES 1. G.G. Schwartz, P.G. Steg, M. Szarek, et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med, 374 (2018), pp. 1-10 2. J.W. Eikelboom, S.J. Connolly, J. Bosch, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med, 377 (2017), pp. 1319-1330 3. P.M. Ridker, B.M. Everett, T. Thuren, et al., CANTOS Trial Group Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med, 377 (2017), pp. 1119-1131 4. J. Boren, M.J. Chapman, R.M. Krauss, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J, 41 (2020), pp. 2313-2330, 10.1093/eurheart/ehz962 5. J.R. Guyton, K.F. Klemp. Transitional features in human atherosclerosis. intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks. Am J Pathol, 143 (1993), pp. 1444- 1457 6. P. Libby. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 32 (2012), pp. 2045- 2051 7. G.S. Abela. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol, 4 (2010), pp. 156-16 8. A. Janoudi, F.E. Shamoun, J.K. Kalavakunta, G.S. Abela. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J, 37 (2016), pp. 1959-1967 9. P. Düewell, H. Kono, K.J. Rayner, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464 (2010), pp. 1357-1361 10. F. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, J. Tschopp. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 440 (2006), pp. 237-241 11. A. Grebe, E. Latz. Cholesterol crystals and inflammation. Curr Rheumatol Rep, 15 (2013), p. 313 12. C.R. Loomis, G.G. Shipley, D.M. Small. The phase behavior of hydrated cholesterol. J Lipid Res, 20 (1979), pp. 525-535 13. A. Vedre, D.R. Pathak, M. Crimp, C. Lum, M. Koochesfahani, G.S. Abela. Physical factors that trigger cholesterol crystallization leading to plaque rupture. Atherosclerosis, 203 (2009), pp. 89-96 14. F.M. Konikoff, P.L. De La Porte, H. Laufer, N. Domingo, H. Lafont, T. Gilat. Calcium and the anionic polypeptide fraction (APF) have opposing effects on cholesterol crystallization in model bile. J Hepatol, 27 (1997), pp. 707-715 15. B.E. North, S.S. Katz, D.M. Small. The dissolution of cholesterol monohydrate crystals in atherosclerotic plaque lipids. Atherosclerosis, 30 (1978), pp. 211-217 16. F. Konikoff, D. Chung, J. Donovan. Filamentous, helical and tubular microstructures during cholesterol crystallization from bile. J Clin Invest, 90 (1992), pp. 1155-1160 17. B. Khaykovich, C. Hossain, J.J. McManus, A. Lomakin, D.E. Moncton, G.B. Benedek. Structure of cholesterol helical ribbons and self-assembling biological springs. Proc Natl Acad Sci, 104 (2007), pp. 9656-9660 18. N.P. Reynolds, J. Adamcik, J.T. Berryman, et al. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nat Commun, 8 (2017), pp. 1338-1348 19. A.G. Shtukenberg, Y.O. Punin, A. Gujral, B. Kahr. Growth actuated bending and twisting of single crystals. Angew Chem Int Ed, 53 (2014), pp. 672-699

RkJQdWJsaXNoZXIy ODAyMDc0