Aernoud Fiolet

69 Viewing Atherosclerosis through a Crystal Lens 38. C. Herder, El Dalmas, M. Böni-Schnetzler, M.Y. Donath. The IL-1 pathway in type 2 diabetes and cardiovascular complications. Trends Endocrinol Metab, 26 (2015), pp. 551-563 39. J.W. McEvoy, K. Nasir, A.P. DeFilippis, et al. Relationship of cigarette smoking with inflammation and subclinical vascular disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol, 35 (2015), pp. 1002-1010 40. R.H. Zhou, M. Yao, T.S. Lee, Y. Zhu, M. Martins-Green, Shyy JYJ. Vascular endothelial growth factor activation of sterol regulatory element binding protein: A potential role in angiogenesis. Circ Res, 95 (2004), pp. 471-478 41. B.S. Dhaliwal, U.P. Steinbrecher. Cholesterol delivered to macrophages by oxidized low density lipoprotein is sequestered in lysosomes and fails to efflux normally. J Lipid Res, 41 (2000), pp. 1658-1665 42. D.A. Chistiakov, Y.V. Bobryshev, A.N. Orekhov. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med, 20 (2016), pp. 17-28 43. G. Kellner-Weibel, P.G. Yancey, W.G. Jerome, et al. Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol, 19 (1999), pp. 1891-189 44. S. Fazio, A.S. Major, L.L. Swift, et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest, 107 (2001), pp. 163-171 45. Y.R. Su, D.E. Dove, A.S. Major, et al. Reduced ABCA1-mediated cholesterol efflux and accelerated atherosclerosis in apolipoprotein e–deficient mice lacking macrophage-derived ACAT1. Circulation, 111 (2005), pp. 2373-2381 46. R.K. Tangirala, W.G. Jerome, N.L. Jones, et al. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J Lipid Res, 35 (1994), pp. 93-104 47. F. Shu, J. Chen, X. Ma, et al. Cholesterol crystal-mediated inflammation is driven by plasma membrane destabilization. Front Immunol, 9 (2018), p. 1163 48. G. Arbore, C. Kemper, M. Kolev. Intracellular complement − the complosome − in immune cell regulation. Mol Immunol, 89 (2017), pp. 2-9 49. K. Rajamaki, J. Lappalainen, K. Oorni, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One, 5 (7) (2010), p. e11765 50. G. Lopez-Castejon, D. Brough. Understanding the mechanism of IL-1 β secretion. Cytokine Growth Factor Rev, 22 (2011), pp. 189-195 51. F.D. Kolodgie, A.P. Burke, G. Nakazawa, Q. Cheng, X. Xu, R. Virmani. Free cholesterol in atherosclerotic plaques: where does it come from? Curr Opin Lipidol, 18 (2007), pp. 500-507 52. S.R. Mulay, H.J. Anders. Crystallopathies. N Engl J Med, 374 (2016), pp. 2465-2476 53. P.S. Seifert,M.D. Kazatchkine. Generation of complement anaphylatoxins andC5b-9 by crystalline cholesterol oxidation derivatives depends on hydroxyl group number and position. Mol Immunol, 24 (1987), pp. 1303-1308 54. P.S. Seifert,G.K.Hansson. Complement receptors and regulatoryproteins in human atherosclerotic lesions. Arteriosclerosis, 9 (1989), pp. 802-811 55. M. Oh-hora, T. Ishibashi, R. Kiyotake, S. Yamasaki, T. Miyamoto, E. Ishikawa. Human mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem, 290 (2015), pp. 25322- 25332 56. S. Gordon. Phagocytosis: An immunobiologic process. Immunity, 44 (2016), pp. 463-475

RkJQdWJsaXNoZXIy ODAyMDc0