Tjallie van der Kooi

42. Aloush SM, Al Qadire M, Assmairan K, Al Sheikh H, Mosbah A, Hussien H, Al Bzoor B. Risk factors for hospital‐acquired non‐catheter‐associated urinary tract infection. J Am Assoc Nurse Pract. 2019;31(12):747‐51 https://doi.org/10.1097/JXX.0000000000000175. 43. Simon S, Hollenbeck B. Risk factors for surgical site infections in knee and hip arthroplasty patients. Am J Infect Control. 2022;50(2):214‐6 https://doi.org/10.1016/j.ajic.2021.11.006. 44. Zhang X, Liu P, You J. Risk factors for surgical site infection following spinal surgery: A meta‐analysis. Medicine (Baltimore). 2022;101(8):e28836 https://doi.org/10.1097/MD.0000000000028836. 45. Cai W, Wang L, Wang W, Zhou T. Systematic review and meta‐analysis of the risk factors of surgical site infection in patients with colorectal cancer. Transl Cancer Res. 2022;11(4):857‐71 https://doi.org/10.21037/tcr‐22‐627. 46. Kohno S, Hasegawa T, Aoki H, Ogawa M, Yoshida K, Yanaga K, Ikegami T. Analysis of risk factors for surgical site infection and postoperative recurrence following inguinal and femoral hernia surgery in adults. Asian J Surg. 2022;45(4):1001‐6 https://doi.org/10.1016/j.asjsur.2021.08.019. 47. Gan C, Wang Y, Tang Y, Wang K, Sun B, Wang M, Zhu F. Risk factors for surgical site infection in head and neck cancer. Support Care Cancer. 2022;30(3):2735‐43 https://doi.org/10.1007/s00520‐021‐06687‐8. 48. Hoffman T, Shitrit P, Chowers M. Risk factors for surgical site infections following open versus laparoscopic colectomies: a cohort study. BMC Surg. 2021;21(1):376 https://doi.org/10.1186/s12893‐021‐ 01379‐w. 49. (CBS) SN. Statline ‐ Health and healthcare use; sex, age, personality traits: Statistics Netherlands (CBS); 2022 [Available from: https://opendata.cbs.nl/#/CBS/nl/dataset/83384NED/table?ts=1655115117270. 50. (CBS) SN. Youngsters and elderly per municipality (Jongeren en ouderen per gemeente): Statistics Netherlands (CBS); 2023 [Available from: {(CBS), 2022 #145}. 51. Verberk JDM, Aghdassi SJS, Abbas M, Naucler P, Gubbels S, Maldonado N, et al. Automated surveillance systems for healthcare‐associated infections: results from a European survey and experiences from real‐life utilization. J Hosp Infect. 2022;122:35‐43 https://doi.org/10.1016/j.jhin.2021.12.021. 52. van Mourik MSM, van Rooden SM, Abbas M, Aspevall O, Astagneau P, Bonten MJM, et al. PRAISE: providing a roadmap for automated infection surveillance in Europe. Clin Microbiol Infect. 2021;27 Suppl 1:S3‐S19 https://doi.org/10.1016/j.cmi.2021.02.028. 53. Verberk JDM, van Rooden SM, Koek MBG, Hetem DJ, Smilde AE, Bril WS, et al. Validation of an algorithm for semiautomated surveillance to detect deep surgical site infections after primary total hip or knee arthroplasty‐A multicenter study. Infect Control Hosp Epidemiol. 2021;42(1):69‐74 https://doi.org/10.1017/ice.2020.377. 54. PREZIES PoHtS‐Dnsnfhai. PREZIES Automatisering Surveillance: POWI ORTHOpedie (PAS ORTHO) 2022 [Available from: https://www.rivm.nl/prezies/pas‐ortho. 55. Gerver SM, Mihalkova M, Bion JF, Wilson APR, Chudasama D, Johnson AP, et al. Surveillance of bloodstream infections in intensive care units in England, May 2016‐April 2017: epidemiology and ecology. J Hosp Infect. 2020;106(1):1‐9 https://doi.org/10.1016/j.jhin.2020.05.010. 56. Kaiser AM, de Jong E, Evelein‐Brugman SF, Peppink JM, Vandenbroucke‐Grauls CM, Girbes AR. Development of trigger‐based semi‐automated surveillance of ventilator‐associated pneumonia and central line‐associated bloodstream infections in a Dutch intensive care. Ann Intensive Care. 2014;4:40 https://doi.org/10.1186/s13613‐014‐0040‐x. 57. Rock C, Thom KA, Harris AD, Li S, Morgan D, Milstone AM, et al. A Multicenter Longitudinal Study of Hospital‐Onset Bacteremia: Time for a New Quality Outcome Measure? Infect Control Hosp Epidemiol. 2016;37(2):143‐8 https://doi.org/10.1017/ice.2015.261. 10 255 General Discussion

RkJQdWJsaXNoZXIy MTk4NDMw