105 TSPO in neurodegeneration 28. Notredame C, et al. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. Sep 8 2000;302(1):205-17. doi:10.1006/ jmbi.2000.4042 29. Erb I, et al. Use of ChIP-Seq data for the design of a multiple promoter-alignment method. Nucleic Acids Res. Apr 2012;40(7):e52. doi:10.1093/nar/ gkr1292 30. Waterhouse AM, et al. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. May 1 2009;25(9):1189-91. doi:10.1093/bioinformatics/btp033 31. Tamura K, et al. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. Jun 25 2021;38(7):3022-3027. doi:10.1093/molbev/ msab120 32. Bailey TL, et al. The MEME Suite. Nucleic Acids Res. Jul 1 2015;43(W1):W39-49. doi:10.1093/nar/ gkv416 33. Bailey TL, et al. SEA: Simple Enrichment Analysis of motifs. bioRxiv. 2021; 34. Love MI, et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/ s13059-014-0550-8 35. Ostuni R, et al. Latent enhancers activated by stimulation in differentiated cells. Cell. Jan 17 2013;152(1-2):157-71. doi:10.1016/j. cell.2012.12.018 36. Smith AM, et al. Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology. Acta Neuropathol. Jan 2022;143(1):7591. doi:10.1007/s00401-021-02372-6 37. Gate D, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature. Jan 2020;577(7790):399-404. doi:10.1038/ s41586-019-1895-7 38. Schafflick D, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. Jan 14 2020;11(1):247. doi:10.1038/s41467-019-14118-w 39. Ramesh A, et al. A pathogenic and clonally expanded B cell transcriptome in activemultiple sclerosis. Proc Natl Acad Sci U S A. Sep 15 2020;117(37):2293222943. doi:10.1073/pnas.2008523117 40. Sousa C, et al. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep. Nov 2018;19(11):e46171. doi:10.15252/embr.201846171 41. Keren-Shaul H, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. Jun 15 2017;169(7):12761290 e17. doi:10.1016/j.cell.2017.05.018 42. Wheeler MA, et al. MAFG-driven astrocytes promote CNS inflammation. Nature. Feb 2020;578(7796):593-599. doi:10.1038/s41586020-1999-0 43. Duan L, et al. PDGFRbeta Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron. Oct 10 2018;100(1):183-200 e8. doi:10.1016/j. neuron.2018.08.030 44. Stuart T, et al. Comprehensive Integration of SingleCell Data. Cell. Jun 13 2019;177(7):1888-1902 e21. doi:10.1016/j.cell.2019.05.031 45. Khozoie C, et al. scFlow: A Scalable and Reproducible Analysis Pipeline for Single-Cell RNA Sequencing Data. Authorea Preprints; 2021. 46. Tsartsalis S, et al. Single nuclear transcriptional signatures of dysfunctional brain vascular homeostasis in Alzheimer’s disease. 2021; 47. Finak G, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. Dec 10 2015;16(1):278. doi:10.1186/s13059-015-0844-5 48. Ewels PA, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. Mar 2020;38(3):276-278. doi:10.1038/ s41587-020-0439-x 49. Langfelder P, et al. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. Dec 29 2008;9(1):559. doi:10.1186/1471-2105-9-559 50. Zhang B, et al. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. Jul 1 2005;33(Web Server issue):W741-8. doi:10.1093/nar/gki475 51. Al-Izki S, et al. Practical guide to the induction of relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. Mult Scler Relat Disord. Jan 2012;1(1):29-38. doi:10.1016/j.msard.2011.09.001 52. Peferoen LA, et al. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABHmice. Immunology. Oct 2016;149(2):14656. doi:10.1111/imm.12644 53. Baker D, et al. Publication guidelines for refereeing and reporting on animal use in experimental autoimmune encephalomyelitis. J Neuroimmunol. Jan 18 2012;242(1-2):78-83. doi:10.1016/j. jneuroim.2011.11.003 54. Maggi P, et al. Magnetic resonance imaging of experimental autoimmune encephalomyelitis in the common marmoset. J Neuroimmunol. Mar 15 2017;304:86-92. doi:10.1016/j. jneuroim.2016.09.016 55. Nardo G, et al. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. Brain. Nov 2013;136(Pt 11):3305-32. doi:10.1093/brain/ awt250 56. Nardo G, et al. Immune response in peripheral axons delays disease progression in SOD1(G93A) mice. J Neuroinflammation. Oct 7 2016;13(1):261. doi:10.1186/s12974-016-0732-2 57. Hampton DW, et al. HspB5 Activates a Neuropro-
RkJQdWJsaXNoZXIy MTk4NDMw