Erik Nutma

106 Chapter 4 tective Glial Cell Response in Experimental Tauopathy. Front Neurosci. 2020;14:574. doi:10.3389/ fnins.2020.00574 58. Hampton DW, et al. Cell-mediated neuroprotection in a mouse model of human tauopathy. J Neurosci. Jul 28 2010;30(30):9973-83. doi:10.1523/JNEUROSCI.0834-10.2010 59. Torvell M, et al. A single systemic inflammatory insult causes acute motor deficits and accelerates disease progression in a mouse model of human tauopathy. Alzheimers Dement (N Y). 2019/01/01/ 2019;5:579-591. doi:10.1016/j.trci.2019.09.001 60. Haenseler W, et al. Excess alpha-synuclein compromises phagocytosis in iPSC-derived macrophages. Sci Rep. Aug 21 2017;7(1):9003. doi:10.1038/ s41598-017-09362-3 61. Haenseler W, et al. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Reports. Jun 6 2017;8(6):1727-1742. doi:10.1016/j.stemcr.2017.05.017 62. Shlyueva D, et al. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet. Apr 2014;15(4):272-86. doi:10.1038/ nrg3682 63. Celada A, et al. The transcription factor PU.1 is involved in macrophage proliferation. J Exp Med. Jul 1 1996;184(1):61-9. doi:10.1084/jem.184.1.61 64. Ghisletti S, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. Mar 26 2010;32(3):317-28. doi:10.1016/j.immuni.2010.02.008 65. Rashid K, et al. Transcriptional regulation of Translocator protein (18kDa) (TSPO) in microglia requires Pu.1, Ap1 and Sp factors. Biochim Biophys Acta Gene Regul Mech. Dec 2018;1861(12):1119-1133. doi:10.1016/j.bbagrm.2018.10.018 66. Lane CA, et al. Alzheimer’s disease. Eur J Neurol. Jan 2018;25(1):59-70. doi:10.1111/ene.13439 67. Tiwari S, et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541-5554. doi:10.2147/IJN.S200490 68. Kellner A, et al. Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol. Jan 2009;65(1):24-31. doi:10.1002/ana.21475 69. Hansen DV, et al. Microglia in Alzheimer’s disease. J Cell Biol. Feb 5 2018;217(2):459-472. doi:10.1083/ jcb.201709069 70. Xuan FL, et al. Differences of Microglia in the Brain and the Spinal Cord. Front Cell Neurosci. 2019;13:504. doi:10.3389/fncel.2019.00504 71. Nutma E, et al. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain. Nov 1 2019;142(11):34403455. doi:10.1093/brain/awz287 72. Tuisku J, et al. Effects of age, BMI and sex on the glial cell marker TSPO- a multicentre [(11)C]PBR28 HRRT PET study. Eur J Nucl Med Mol Imaging. Oct 2019;46(11):2329-2338. doi:10.1007/s00259-01904403-7 73. Gaitan MI, et al. Perivenular brain lesions in a primate multiple sclerosis model at 7-tesla magnetic resonance imaging. Mult Scler. Jan 2014;20(1):6471. doi:10.1177/1352458513492244 74. t Hart BA, et al. Non-invasive measurement of brain damage in a primate model of multiple sclerosis. Trends Mol Med. Feb 2004;10(2):85-91. doi:10.1016/j.molmed.2003.12.008 75. Lefeuvre JA, et al. The spectrum of spinal cord lesions in a primate model of multiple sclerosis. Mult Scler. Mar 2020;26(3):284-293. doi:10.1177/1352458518822408 76. Stephenson J, et al. Inflammation in CNS neurodegenerative diseases. Immunology. Jun 2018;154(2):204-219. doi:10.1111/imm.12922 77. Doorn KJ, et al. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun. Aug 7 2014;2:90. doi:10.1186/s40478-014-0090-1 78. Ghadery C, et al. Microglial activation in Parkinson’s disease using [(18)F]-FEPPA. J Neuroinflammation. Jan 11 2017;14(1):8. doi:10.1186/s12974-0160778-1 79. Koshimori Y, et al. Imaging Striatal Microglial Activation in Patients with Parkinson’s Disease. PLOS ONE. 2015;10(9):e0138721. doi:10.1371/journal. pone.0138721 80. Varnäs K, et al. PET imaging of [11C] PBR28 in Parkinson’s disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. Eur J Nucl Med Mol Imaging. 2019;46(2):367-375. 81. Mathys H, et al. Author Correction: Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. Jul 2019;571(7763):E1. doi:10.1038/s41586-0191329-6 82. Grubman A, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci. Dec 2019;22(12):2087-2097. doi:10.1038/s41593-019-0539-4 83. Zhou Y, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med. Jan 2020;26(1):131-142. doi:10.1038/s41591-019-0695-9

RkJQdWJsaXNoZXIy MTk4NDMw