150 Chapter 6 1. Mackenzie IS, et al. Incidence and prevalence of multiple sclerosis in the UK 1990-2010: a descriptive study in the General Practice Research Database. J Neurol Neurosurg Psychiatry. Jan 2014;85(1):7684. doi:10.1136/jnnp-2013-305450 2. Fisniku LK, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. Mar 2008;131(Pt 3):80817. doi:10.1093/brain/awm329 3. Sormani MP, et al. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol. Jan 2014;75(1):43-9. doi:10.1002/ana.24018 4. Schlaeger R, et al. Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol. Oct 2014;76(4):568-80. doi:10.1002/ ana.24241 5. Losseff NA, et al. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. Jun 1996;119 ( Pt 3):701-8. doi:10.1093/brain/119.3.701 6. Lin X, et al. Spinal cord atrophy and disability in multiple sclerosis over four years: application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon beta-1a (Rebif) treatment trial. J Neurol Neurosurg Psychiatry. Aug 2003;74(8):1090-4. doi:10.1136/ jnnp.74.8.1090 7. Kearney H, et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler. Jan 2014;20(1):72-80. doi:10.1177/1352458513492245 8. Bjartmar C, et al. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol. Dec 2000;48(6):893-901. doi:10.1002/1531-8249(200012)48:6<893::Aidana10>3.3.Co;2-2 9. DeLuca GC, et al. Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain. May 2004;127(Pt 5):1009-18. doi:10.1093/brain/awh118 10. Petrova N, et al. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathol. May 2018;28(3):334-348. doi:10.1111/bpa.12516 11. Wegner C, et al. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology. Sep 26 2006;67(6):960-7. doi:10.1212/01. wnl.0000237551.26858.39 12. Dutta R, et al. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann Neurol. Mar 2011;69(3):445-54. doi:10.1002/ana.22337 13. Bradbury EJ, et al. Spinal cord repair strategies: why do they work? Nat Rev Neurosci. Aug 2006;7(8):644-53. doi:10.1038/nrn1964 14. Tabakow P, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 2014;23(12):163155. doi:10.3727/096368914X685131 15. Albert M, et al. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis. Brain Pathol. Nov 2017;27(6):737-747. doi:10.1111/ bpa.12450 16. Jurgens T, et al. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain. Jan 2016;139(Pt 1):39-46. doi:10.1093/brain/awv353 17. Bourane S, et al. Identification of a spinal circuit for light touch and fine motor control. Cell. Jan 29 2015;160(3):503-15. doi:10.1016/j. cell.2015.01.011 18. Carassiti D, et al. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol Appl Neurobiol. Jun 2018;44(4):377390. doi:10.1111/nan.12405 19. Gilmore CP, et al. Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol. Oct 2009;19(4):6429. doi:10.1111/j.1750-3639.2008.00228.x 20. Pinto JG, et al. Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex. Front Neural Circuits. May 2013;7:97. 97. doi:10.3389/fncir.2013.00097 21. MichevaKD, etal. Single-synapseanalysisofadiverse synapse population: proteomic imaging methods and markers. Neuron. Nov 18 2010;68(4):639-53. doi:10.1016/j.neuron.2010.09.024 22. Huttner WB, et al. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol. May 1983;96(5):1374-88. doi:10.1083/jcb.96.5.1374 23. Bahler M, et al. The synapsins and the regulation of synaptic function. Bioessays. Jun 1990;12(6):25963. doi:10.1002/bies.950120603 24. Bykhovskaia M. Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol. Jun 2011;22(4):387-92. doi:10.1016/j. semcdb.2011.07.003 25. Jahn R, et al. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. Jun 1985;82(12):4137-41. doi:10.1073/ pnas.82.12.4137 26. Wiedenmann B, et al. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. Jul 1985;41(3):1017-28. doi:10.1016/s0092-8674(85)80082-9 27. Takamori S, et al. Molecular anatomy of a trafficking organelle. Cell. Nov 17 2006;127(4):831-46. References
RkJQdWJsaXNoZXIy MTk4NDMw