197 White matter microglia heterogeneity “membranous lipodystrophy”—an autopsy case demonstrating numerous peculiar membrane‐ structures composed of compound lipid in bone and bone marrow and various adipose tissues. Pathology International. 1973;23(3):539-558. 111.Oda M. Familial sudanophilic leukodystrophy with multiple and semisystematic spongy foci: Autopsy report of three adult females. International Symposium on the Leukodystrophy and Allied Diseases. Neuropathology. 1983:173-185. 112. Dardiotis E, et al. A novel mutation in TREM2 gene causing Nasu-Hakola disease and review of the literature. Neurobiol Aging. May 2017;53:194 e13194e22.doi:10.1016/j.neurobiolaging.2017.01.015 113. Paloneva J, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. Sep2002;71(3):656-62. doi:10.1086/342259 114.Mecca C, et al. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci. Jan 22 2018;19(1)doi:10.3390/ijms19010318 115. Paloneva J, et al. CNS manifestations of NasuHakola disease: a frontal dementia with bone cysts. Neurology. Jun 12 2001;56(11):1552-8. doi:10.1212/wnl.56.11.1552 116. Tanaka J. Nasu-Hakola disease: a review of its leukoencephalopathic and membranolipodystrophic features. Neuropathology. Sep 2000;20 Suppl:S25-9. doi:10.1046/j.1440-1789.2000.00297.x 117. Schwabenland M, et al. Loss of USP18 in microglia induces white matter pathology. Acta Neuropathol Commun. Jul 4 2019;7(1):106. doi:10.1186/s40478019-0757-8 118.Meuwissen ME, et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med. Jun 27 2016;213(7):1163-74. doi:10.1084/jem.20151529 119. Goldmann T, et al. USP 18 lack in microglia causes destructive interferonopathy of the mouse brain. The EMBO journal. 2015;34(12):1612-1629. 120. Takata K, et al. Poised for action: USP18 restrains microglial activation in the white matter. EMBO J. Jun 12 2015;34(12):1603-5. doi:10.15252/ embj.201591899 121. Bergner CG, et al. Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia. Jun 2019;67(6):1196-1209. doi:10.1002/glia.23598 122.Marteyn A, et al. Is involvement of inflammation underestimated in Pelizaeus-Merzbacher disease? J Neurosci Res. Dec 2016;94(12):1572-1578. doi:10.1002/jnr.23931 123. Snook ER, et al. Innate immune activation in the pathogenesis of a murine model of globoid cell leukodystrophy. Am J Pathol. Feb 2014;184(2):38296. doi:10.1016/j.ajpath.2013.10.011 124. Garcia LM, et al. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis. Dec 2020;146:105087. doi:10.1016/j.nbd.2020.105087 125. Hirono N, et al. Impact of white matter changes on clinical manifestation of Alzheimer’s disease: A quantitative study. Stroke. Sep 2000;31(9):2182-8. doi:10.1161/01.str.31.9.2182 126. Jang H, et al. Correlations between Gray Matter and White Matter Degeneration in Pure Alzheimer’s Disease, Pure Subcortical Vascular Dementia, and Mixed Dementia. Sci Rep. Aug 25 2017;7(1):9541. doi:10.1038/s41598-017-10074-x 127. Stout JC, et al. Association of dementia severity with cortical gray matter and abnormal white matter volumes in dementia of the Alzheimer type. Arch Neurol. Aug 1996;53(8):742-9. doi:10.1001/ archneur.1996.00550080056013 128. Jansen IE, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. Mar 2019;51(3):404-413. doi:10.1038/s41588018-0311-9 129. Gerrits E, et al. Distinct amyloid-beta and tauassociated microglia profiles in Alzheimer’s disease. Acta Neuropathol. May 2021;141(5):681-696. doi:10.1007/s00401-021-02263-w 130. Sierksma A, et al. Novel Alzheimer risk genes determine the microglia response to amyloidbeta but not to TAU pathology. EMBO Mol Med. Mar 6 2020;12(3):e10606. doi:10.15252/ emmm.201910606 131. Levit A, et al. Impaired behavioural flexibility related to white matter microgliosis in the TgAPP21 rat model of Alzheimer disease. Brain Behav Immun. Aug 2019;80:25-34. doi:10.1016/j.bbi.2019.02.013 132. Raj D, et al. Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain. Front Mol Neurosci. 2017;10:206. doi:10.3389/ fnmol.2017.00206 133.Mathys H, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. Jun 2019;570(7761):332-337. doi:10.1038/s41586019-1195-2 134. Zhou T, et al. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep. Oct 2017;16(4):4379-4392. doi:10.3892/ mmr.2017.7186 135. D’Erchia AM, et al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci Rep. Aug 30 2017;7(1):10046. doi:10.1038/ s41598-017-10488-7 136. Dols-Icardo O, et al. Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. Sep 2020;7(5):e829. doi:10.1212/ NXI.0000000000000829 137. Petrik MS, et al. Magnetic resonance microscopy and immunohistochemistry of the CNS of the mutant SOD murine model of ALS reveals
RkJQdWJsaXNoZXIy MTk4NDMw