Erik Nutma

197 White matter microglia heterogeneity “membranous lipodystrophy”—an autopsy case demonstrating numerous peculiar membrane‐ structures composed of compound lipid in bone and bone marrow and various adipose tissues. Pathology International. 1973;23(3):539-558. 111.Oda M. Familial sudanophilic leukodystrophy with multiple and semisystematic spongy foci: Autopsy report of three adult females. International Symposium on the Leukodystrophy and Allied Diseases. Neuropathology. 1983:173-185. 112. Dardiotis E, et al. A novel mutation in TREM2 gene causing Nasu-Hakola disease and review of the literature. Neurobiol Aging. May 2017;53:194 e13194e22.doi:10.1016/j.neurobiolaging.2017.01.015 113. Paloneva J, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. Sep2002;71(3):656-62. doi:10.1086/342259 114.Mecca C, et al. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci. Jan 22 2018;19(1)doi:10.3390/ijms19010318 115. Paloneva J, et al. CNS manifestations of NasuHakola disease: a frontal dementia with bone cysts. Neurology. Jun 12 2001;56(11):1552-8. doi:10.1212/wnl.56.11.1552 116. Tanaka J. Nasu-Hakola disease: a review of its leukoencephalopathic and membranolipodystrophic features. Neuropathology. Sep 2000;20 Suppl:S25-9. doi:10.1046/j.1440-1789.2000.00297.x 117. Schwabenland M, et al. Loss of USP18 in microglia induces white matter pathology. Acta Neuropathol Commun. Jul 4 2019;7(1):106. doi:10.1186/s40478019-0757-8 118.Meuwissen ME, et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med. Jun 27 2016;213(7):1163-74. doi:10.1084/jem.20151529 119. Goldmann T, et al. USP 18 lack in microglia causes destructive interferonopathy of the mouse brain. The EMBO journal. 2015;34(12):1612-1629. 120. Takata K, et al. Poised for action: USP18 restrains microglial activation in the white matter. EMBO J. Jun 12 2015;34(12):1603-5. doi:10.15252/ embj.201591899 121. Bergner CG, et al. Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia. Jun 2019;67(6):1196-1209. doi:10.1002/glia.23598 122.Marteyn A, et al. Is involvement of inflammation underestimated in Pelizaeus-Merzbacher disease? J Neurosci Res. Dec 2016;94(12):1572-1578. doi:10.1002/jnr.23931 123. Snook ER, et al. Innate immune activation in the pathogenesis of a murine model of globoid cell leukodystrophy. Am J Pathol. Feb 2014;184(2):38296. doi:10.1016/j.ajpath.2013.10.011 124. Garcia LM, et al. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis. Dec 2020;146:105087. doi:10.1016/j.nbd.2020.105087 125. Hirono N, et al. Impact of white matter changes on clinical manifestation of Alzheimer’s disease: A quantitative study. Stroke. Sep 2000;31(9):2182-8. doi:10.1161/01.str.31.9.2182 126. Jang H, et al. Correlations between Gray Matter and White Matter Degeneration in Pure Alzheimer’s Disease, Pure Subcortical Vascular Dementia, and Mixed Dementia. Sci Rep. Aug 25 2017;7(1):9541. doi:10.1038/s41598-017-10074-x 127. Stout JC, et al. Association of dementia severity with cortical gray matter and abnormal white matter volumes in dementia of the Alzheimer type. Arch Neurol. Aug 1996;53(8):742-9. doi:10.1001/ archneur.1996.00550080056013 128. Jansen IE, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. Mar 2019;51(3):404-413. doi:10.1038/s41588018-0311-9 129. Gerrits E, et al. Distinct amyloid-beta and tauassociated microglia profiles in Alzheimer’s disease. Acta Neuropathol. May 2021;141(5):681-696. doi:10.1007/s00401-021-02263-w 130. Sierksma A, et al. Novel Alzheimer risk genes determine the microglia response to amyloidbeta but not to TAU pathology. EMBO Mol Med. Mar 6 2020;12(3):e10606. doi:10.15252/ emmm.201910606 131. Levit A, et al. Impaired behavioural flexibility related to white matter microgliosis in the TgAPP21 rat model of Alzheimer disease. Brain Behav Immun. Aug 2019;80:25-34. doi:10.1016/j.bbi.2019.02.013 132. Raj D, et al. Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain. Front Mol Neurosci. 2017;10:206. doi:10.3389/ fnmol.2017.00206 133.Mathys H, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. Jun 2019;570(7761):332-337. doi:10.1038/s41586019-1195-2 134. Zhou T, et al. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep. Oct 2017;16(4):4379-4392. doi:10.3892/ mmr.2017.7186 135. D’Erchia AM, et al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci Rep. Aug 30 2017;7(1):10046. doi:10.1038/ s41598-017-10488-7 136. Dols-Icardo O, et al. Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. Sep 2020;7(5):e829. doi:10.1212/ NXI.0000000000000829 137. Petrik MS, et al. Magnetic resonance microscopy and immunohistochemistry of the CNS of the mutant SOD murine model of ALS reveals

RkJQdWJsaXNoZXIy MTk4NDMw