211 General Discussion imaging of brain glial cell activation in multiple sclerosis. Mult Scler. Oct 2017;23(11):1469-1478. doi:10.1177/1352458516681504 48. Sucksdorff M, et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain. Dec 5 2020;143(11):33183330. doi:10.1093/brain/awaa275 49. Kaunzner UW, et al. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain. Jan 1 2019;142(1):133-145. doi:10.1093/brain/awy296 50. Bo L, et al. Magnetic resonance imaging as a tool to examine the neuropathology of multiple sclerosis. Neuropathol Appl Neurobiol. Apr 2004;30(2):10617. doi:10.1111/j.1365-2990.2003.00521.x 51. Brink BP, et al. The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J Neuropathol Exp Neurol. Feb 2005;64(2):147-55. doi:10.1093/jnen/64.2.147 52. van Horssen J, et al. The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol. Apr 2007;66(4):321-8. doi:10.1097/ nen.0b013e318040b2de 53. Hendrickx DAE, et al. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. Aug 15 2017;309:12-22. doi:10.1016/j. jneuroim.2017.04.007 54. Corcia P, et al. Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLOS ONE. 2012;7(12):e52941. doi:10.1371/journal. pone.0052941 55. Zurcher NR, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin. 2015;7:409-14. doi:10.1016/j.nicl.2015.01.009 56. Ratai EM, et al. Integrated imaging of [(11)C]- PBR28 PET, MR diffusion and magnetic resonance spectroscopy (1)H-MRS in amyotrophic lateral sclerosis. Neuroimage Clin. 2018/01/01/ 2018;20:357-364. doi:10.1016/j.nicl.2018.08.007 57. Albrecht DS, et al. Pseudoreference Regions for Glial Imaging with (11)C-PBR28: Investigation in 2 Clinical Cohorts. J Nucl Med. Jan 2018;59(1):107114. doi:10.2967/jnumed.116.178335 58. Alshikho MJ, et al. Integrated magnetic resonance imaging and [(11) C]-PBR28 positron emission tomographic imaging in amyotrophic lateral sclerosis. Ann Neurol. Jun 2018;83(6):1186-1197. doi:10.1002/ana.25251 59. Alshikho MJ, et al. Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis. Neurology. Dec 13 2016;87(24):25542561. doi:10.1212/WNL.0000000000003427 60. Johansson A, et al. Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci. Apr 15 2007;255(1-2):17-22. doi:10.1016/j. jns.2007.01.057 61. Lane CA, et al. Alzheimer’s disease. Eur J Neurol. Jan 2018;25(1):59-70. doi:10.1111/ene.13439 62. Tiwari S, et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541-5554. doi:10.2147/IJN.S200490 63. Bae KR, et al. Translocator protein 18 kDa negatively regulates inflammation in microglia. J Neuroimmune Pharmacol. Jun 2014;9(3):424-37. doi:10.1007/s11481-014-9540-6 64. Gottfried-Blackmore A, et al. Brain microglia express steroid-converting enzymes in the mouse. J Steroid Biochem Mol Biol. Mar 2008;109(1-2):96107. doi:10.1016/j.jsbmb.2007.12.013 65. Karlstetter M, et al. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflammation. Jan 8 2014;11:3. doi:10.1186/1742-2094-11-3 66. Wang M, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. Mar 5 2014;34(10):3793806. doi:10.1523/JNEUROSCI.3153-13.2014 67. Rone MB, et al. Targeting and insertion of the cholesterol-binding translocator protein into the outer mitochondrial membrane. Biochemistry. Jul 28 2009;48(29):6909-20. doi:10.1021/bi900854z 68. Gaudet AD, et al. Glial Cells Shape Pathology and Repair After Spinal Cord Injury. Neurotherapeutics. Jul 2018;15(3):554-577. doi:10.1007/s13311-0180630-7 69. Kiray H, et al. The multifaceted role of astrocytes in regulatingmyelination. ExpNeurol. Sep 2016;283(Pt B):541-9. doi:10.1016/j.expneurol.2016.03.009 70. Li J, et al. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology. Front Cell Neurosci. 2016/05/10 2016;10:119. doi:10.3389/fncel.2016.00119 71. Seth P, et al. Astrocyte, the star avatar: redefined. J Biosci. Sep 2008;33(3):405-21. doi:10.1007/ s12038-008-0060-5 72. Ghadery C, et al. PET Evaluation of Microglial Activation in Non-neurodegenerative Brain Diseases. Curr Neurol Neurosci Rep. May 28 2019;19(7):38. doi:10.1007/s11910-019-0951-x 73. AlamMM, et al. Recent Progress in theDevelopment of TSPO PET Ligands for Neuroinflammation Imaging in Neurological Diseases. Nucl Med Mol Imaging. Dec 2017;51(4):283-296. doi:10.1007/ s13139-017-0475-8 74. Werry EL, et al. Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int J Mol Sci. Jun 28 2019;20(13). doi:10.3390/ijms20133161 75. Zhang L, et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B. Feb 2021;11(2):373-393. doi:10.1016/j. apsb.2020.08.006
RkJQdWJsaXNoZXIy MTk4NDMw