Erik Nutma

27 General introduction science.1222381 60. Liddelow SA, et al. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity. Jun 20 2017;46(6):957-967. doi:10.1016/j. immuni.2017.06.006 61. Vilalta A, et al. Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease. Febs j. Oct 2018;285(19):3566-3575. doi:10.1111/febs.14323 62. Eroglu C, et al. Regulation of synaptic connectivity by glia. Nature. Nov 11 2010;468(7321):223-31. doi:10.1038/nature09612 63. Lin CCJ, et al. Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci. Mar 2017;20(3):396-405. doi:10.1038/ nn.4493 64. Hasel P, et al. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci. Oct 2021;24(10):1475-1487. doi:10.1038/s41593-02100905-6 65. Massa PT, et al. Cell type-specific regulation of major histocompatibility complex (MHC) class I gene expression in astrocytes, oligodendrocytes, and neurons. Glia. Jul 1993;8(3):201-7. doi:10.1002/ glia.440080307 66. Zhang Y, et al. Interleukin-11 potentiates oligodendrocytesurvival andmaturation,andmyelin formation. J Neurosci. Nov 22 2006;26(47):1217485. doi:10.1523/JNEUROSCI.2289-06.2006 67. Cannella B, et al. Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation. Ann Neurol. Jan 2004;55(1):46-57. doi:10.1002/ana.10764 68. Chakraborty G, et al. Interleukin-2 receptors and interleukin-2-mediated signaling in myelin: activation of diacylglycerol kinase and phosphatidylinositol 3-kinase. Neuroscience. 2003;122(4):967-73. doi:10.1016/j. neuroscience.2003.09.003 69. Bsibsi M, et al. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. Nov 2002;61(11):101321. doi:10.1093/jnen/61.11.1013 70. Bsibsi M, et al. Toll-like receptors 2 and 3 agonists differentially affect oligodendrocyte survival, differentiation, and myelin membrane formation. J Neurosci Res. Feb 2012;90(2):388-98. doi:10.1002/ jnr.22767 71. Peferoen L, et al. Oligodendrocyte-microglia crosstalk in the central nervous system. Immunology. Mar 2014;141(3):302-13. doi:10.1111/imm.12163 72. Ramesh G, et al. A possible role for inflammation in mediating apoptosis of oligodendrocytes as induced by the Lyme disease spirochete Borrelia burgdorferi. J Neuroinflammation. Apr 23 2012;9(1):72. doi:10.1186/1742-2094-9-72 73. Balabanov R, et al. Interferon-γ-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis. Journal of Neuroscience. 2007;27(8):2013-2024. 74. van Noort JM, et al. αB-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. Journal of Neuropathology & Experimental Neurology. 2010;69(7):694-703. 75. vanNoort JM, et al.Mechanisms in thedevelopment of multiple sclerosis lesions: reconciling autoimmune and neurodegenerative factors. CNS Neurol Disord Drug Targets. Aug 2012;11(5):55669. doi:10.2174/187152712801661293 76. Albrecht DS, et al. In Vivo Imaging of Human Neuroinflammation. ACS Chem Neurosci. Apr 20 2016;7(4):470-83. doi:10.1021/ acschemneuro.6b00056 77. Zhang Y, et al. Myeloperoxidase Nuclear Imaging for Epileptogenesis. Radiology. Mar 2016;278(3):82230. doi:10.1148/radiol.2015141922 78. Petroni D, et al. Toward PET imaging of A2B adenosine receptors: a carbon-11 labeled triazinobenzimidazole tracer: Synthesis and imaging of a new A2B PET tracer. Nucl Med Biol. May 2016;43(5):309-17. doi:10.1016/j. nucmedbio.2016.02.005 79. Walsh AJ, et al. Longitudinal MR imaging of iron in multiple sclerosis: an imaging marker of disease. Radiology. Jan 2014;270(1):186-96. doi:10.1148/ radiol.13130474 80. Kothur K, et al. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review. Cytokine. Jan 2016;77:227-37. doi:10.1016/j.cyto.2015.10.001 81. Wang YX, et al. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001/05/03 2001;11(11):2319-31. doi:10.1007/ s003300100908 82. El Ayoubi NK, et al. Blood Biomarkers as Outcome Measures in Inflammatory Neurologic Diseases. Neurotherapeutics. Jan 2017;14(1):135-147. doi:10.1007/s13311-016-0486-7 83. Lue LF, et al. Amyloid Beta and Tau as Alzheimer’s Disease Blood Biomarkers: Promise From New Technologies. Neurol Ther. Jul 2017;6(Suppl 1):2536. doi:10.1007/s40120-017-0074-8 84. Croese T, et al. Extracellular vesicles in neurodegenerative diseases. Mol Aspects Med. Apr 2018;60:52-61. doi:10.1016/j.mam.2017.11.006 85. Pulli B, et al. Imaging Neuroinflammation - from Bench to Bedside. J Clin Cell Immunol. 2014;5doi:10.4172/2155-9899.1000226 86. Serres S, et al. VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J. Dec 2011;25(12):4415-22. doi:10.1096/fj.11-183772 87. Gauberti M, et al. Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes. Stroke. Jul 2013;44(7):1988-96. doi:10.1161/

RkJQdWJsaXNoZXIy MTk4NDMw