30 Chapter 1 neurobiolaging.2014.11.023 137.Wang Y, et al. PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. Eur J Nucl Med Mol Imaging. Jul 2014;41(7):1440-9. doi:10.1007/s00259-0142727-5 138. Daugherty DJ, et al. A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med. Jun 2013;5(6):891-903. doi:10.1002/ emmm.201202124 139. Cosenza-Nashat M, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. Jun 2009;35(3):306-28. doi:10.1111/j.13652990.2008.01006.x 140. Liu B, et al. In Vivo Detection of Age- and DiseaseRelated Increases in Neuroinflammation by 18FGE180 TSPO MicroPET Imaging in Wild-Type and Alzheimer’s Transgenic Mice. J Neurosci. Nov 25 2015;35(47):15716-30. doi:10.1523/ JNEUROSCI.0996-15.2015 141.Maeda J, et al. In vivo positron emission tomographic imaging of glial responses to amyloidbeta and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J Neurosci. Mar 23 2011;31(12):4720-30. doi:10.1523/JNEUROSCI.3076-10.2011 142. Kaunzner UW, et al. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain. Jan 1 2019;142(1):133-145. doi:10.1093/brain/awy296 143.Owen DR, et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab. Aug 2017;37(8):2679-2690. doi:10.1177/0271678X17710182 144. Bae KR, et al. Translocator protein 18 kDa negatively regulates inflammation in microglia. J Neuroimmune Pharmacol. Jun 2014;9(3):424-37. doi:10.1007/s11481-014-9540-6 145. Gottfried-Blackmore A, et al. Brain microglia express steroid-converting enzymes in the mouse. J Steroid Biochem Mol Biol. Mar 2008;109(1-2):96107. doi:10.1016/j.jsbmb.2007.12.013 146. Karlstetter M, et al. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflammation. Jan 8 2014;11:3. doi:10.1186/1742-2094-11-3 147.Wang M, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. Mar 5 2014;34(10):3793806. doi:10.1523/JNEUROSCI.3153-13.2014 148. Stephenson J, et al. Modelling amyotrophic lateral sclerosis in mice. Drug Discovery Today: Disease Models. 2017/12/01/ 2017;25-26:35-44. doi:10.1016/j.ddmod.2018.10.001 149. Baker D, et al. Publication guidelines for refereeing and reporting on animal use in experimental autoimmune encephalomyelitis. J Neuroimmunol. Jan 18 2012;242(1-2):78-83. doi:10.1016/j. jneuroim.2011.11.003 150. Baker D, et al. Critical appraisal of animal models of multiple sclerosis. Mult Scler. Jun 2011;17(6):64757. doi:10.1177/1352458511398885 151. Ramagopalan SV, et al. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. Jul 2010;9(7):727-39. doi:10.1016/ S1474-4422(10)70094-6 152. Ascherio A, et al. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. Apr 2007;61(4):288-99. doi:10.1002/ ana.21117 153. Levin LI, et al. Temporal relationship between elevation of epstein-barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. Jama. May 25 2005;293(20):2496-500. doi:10.1001/jama.293.20.2496 154.Nielsen TR, et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol. Jan 2007;64(1):72-5. doi:10.1001/archneur.64.1.72 155. Ascherio A, et al. EBV and Autoimmunity. Curr Top Microbiol Immunol. 2015;390(Pt 1):365-85. doi:10.1007/978-3-319-22822-8_15 156. Burns DM, et al. Memory B-cell reconstitution following allogeneic hematopoietic stem cell transplantation is an EBV-associated transformation event. Blood. Dec 17 2015;126(25):2665-2675. doi:10.1182/blood-2015-08-665000 157. Fernandez-Menendez S, et al. Epstein-Barr virus and multiple sclerosis. From evidence to therapeutic strategies. J Neurol Sci. Feb 15 2016;361:213-9. doi:10.1016/j.jns.2016.01.013 158. Kakalacheva K, et al. Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein. Viruses. Feb 12 2016;8(2)doi:10.3390/v8020051 159. Bsibsi M, et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 2014;128(2):215229. 160. Bajramović JJ, et al. Presentation of αB-crystallin to T cells in active multiple sclerosis lesions: an early event following inflammatory demyelination. The Journal of Immunology. 2000;164(8):4359-4366. 161. Acheson E, et al. Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation, and other variables. Acta Psychiatrica Scandinavica. 1960;35(S147):132-147. 162. Kampman MT, et al. Vitamin D: a candidate for the environmental effect in multiple sclerosis– observations from Norway. Neuroepidemiology. 2008;30(3):140-146. 163.Munger KL, et al. Serum 25-hydroxyvitamin
RkJQdWJsaXNoZXIy MTk4NDMw