Erik Nutma

31 General introduction D levels and risk of multiple sclerosis. Jama. Dec 20 2006;296(23):2832-8. doi:10.1001/ jama.296.23.2832 164. Ebers GC, et al. Parent-of-origin effect in multiple sclerosis: observations in half-siblings. Lancet. May 29 2004;363(9423):1773-4. doi:10.1016/S01406736(04)16304-6 165.Willer CJ, et al. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci U S A. Oct 28 2003;100(22):12877-82. doi:10.1073/pnas.1932604100 166. Jersild C, et al. Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. Lancet. Dec 1 1973;2(7840):1221-5. doi:10.1016/s0140-6736(73)90970-7 167. Dyment DA, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet. Jul 15 2005;14(14):2019-26. doi:10.1093/hmg/ddi206 168. Thompson AJ, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. Feb 2018;17(2):162-173. doi:10.1016/ S1474-4422(17)30470-2 169. van der Valk P, et al. Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol. Feb 2000;26(1):2-10. doi:10.1046/j.1365-2990.2000.00217.x 170. Duncan ID, et al. Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function. Proc Natl Acad Sci U S A. Nov 7 2017;114(45):E9685-E9691. doi:10.1073/ pnas.1714183114 171. Calabrese M, et al. Grey matter lesions in MS: from histology to clinical implications. Prion. Jan-Feb 2013;7(1):20-7. doi:10.4161/pri.22580 172. Popescu BF, et al. Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol. Mar 7 2012;12(1):11. doi:10.1186/1471-2377-1211 173.Mitchell JD, et al. Amyotrophic lateral sclerosis. The Lancet. 2007;369(9578):2031-2041. 174.Morello G, et al. Neuroinflammation and ALS: Transcriptomic Insights into Molecular Disease Mechanisms and Therapeutic Targets. Mediators Inflamm. 2017/09/07 2017;2017:7070469. doi:10.1155/2017/7070469 175. Gorter RP, et al. Rapidly progressive amyotrophic lateral sclerosis is associated with microglial reactivity and small heat shock protein expression in reactive astrocytes. Neuropathol Appl Neurobiol. Aug 2019;45(5):459-475. doi:10.1111/nan.12525 176.O’Rourke JG, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. Mar 18 2016;351(6279):1324-1329. doi:10.1126/science.aaf1064 177. Kampinga HH, et al. HSPBs: small proteins with big implications in human disease. Int J Biochem Cell Biol. Oct 2012;44(10):1706-10. doi:10.1016/j. biocel.2012.06.005 178. Van Weehaeghe D, et al. TSPO Versus P2X7 as a Target for Neuroinflammation: An In Vitro and In Vivo Study. J Nucl Med. Apr 2020;61(4):604-607. doi:10.2967/jnumed.119.231985 179. Zurcher NR, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin. 2015;7:409-14. doi:10.1016/j.nicl.2015.01.009 180. Venneti S, et al. The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol. Oct 2008;67(10):1001-10. doi:10.1097/NEN.0b013e318188b204 181. HenekaMT, et al. Neuroinflammation inAlzheimer’s disease. Lancet Neurol. Apr 2015;14(4):388-405. doi:10.1016/S1474-4422(15)70016-5 182.Mawuenyega KG, et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774-1774. 183.Wyss-Coray T, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. Apr 2003;9(4):453-7. doi:10.1038/nm838 184.Olabarria M, et al. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia. 2010;58(7):831-838. 185. Hamelin L, et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18 F-DPA-714 PET imaging. Brain. 2016;139(4):1252-1264. 186. Versijpt JJ, et al. Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. European neurology. 2003;50(1):39-47. 187. Kreisl WC, et al. 11C-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. Neurobiology of aging. 2016;44:53-61. 188. Kreisl WC, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136(7):22282238. 189. Lyoo CH, et al. Cerebellum Can Serve As a PseudoReference Region in Alzheimer Disease to Detect NeuroinflammationMeasuredwith PET Radioligand Binding to Translocator Protein. Journal of Nuclear Medicine. May 1 2015;56(5):701-706. doi:10.2967/ jnumed.114.146027 190. Fan Z, et al. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement. Jun 2015;11(6):608-21 e7. doi:10.1016/j. jalz.2014.06.016 191.Gui Y, et al. Characterization of the 18 kDa translocator protein (TSPO) expression in postmortem normal and Alzheimer’s disease brains. Brain Pathol. Jan 2020;30(1):151-164. doi:10.1111/ bpa.12763 192. Constantinescu CS, et al. Experimental autoimmune encephalomyelitis (EAE) as a model

RkJQdWJsaXNoZXIy MTk4NDMw