57 Translocator protein expression in multiple sclerosis of Alzheimer’s disease and related disorders. J Neurosci. Mar 23 2011;31(12):4720-30. doi:10.1523/JNEUROSCI.3076-10.2011 49. Nack A, et al. Expression of Translocator Protein and [18F]-GE180 Ligand Uptake in Multiple Sclerosis Animal Models. Cells. Jan 28 2019;8(2)doi:10.3390/ cells8020094 50. Beckers L, et al. Increased Expression of Translocator Protein (TSPO) Marks Pro-inflammatory Microglia but Does Not Predict Neurodegeneration. Mol Imaging Biol. Feb 2018;20(1):94-102. doi:10.1007/ s11307-017-1099-1 51. Ravikumar B, et al. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology. Sep 2016;108:229-37. doi:10.1016/j. neuropharm.2016.03.053 52. Narayan N, et al. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory ‘M1’ human macrophages. PLOS ONE. 2017;12(10):e0185767. doi:10.1371/journal. pone.0185767 53. Owen DR, et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab. Aug 2017;37(8):2679-2690. doi:10.1177/0271678X17710182 54. Harberts E, et al. Translocator protein 18 kDa (TSPO) expression in multiple sclerosis patients. J Neuroimmune Pharmacol. Mar 2013;8(1):51-7. doi:10.1007/s11481-012-9397-5 55. Peferoen LA, et al. Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J Neuropathol Exp Neurol. Jan 2015;74(1):48-63. doi:10.1097/NEN.0000000000000149 56. Zrzavy T, et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain. Jul 1 2017;140(7):1900-1913. doi:10.1093/brain/awx113 57. Bo L, et al. Magnetic resonance imaging as a tool to examine the neuropathology of multiple sclerosis. Neuropathol Appl Neurobiol. Apr 2004;30(2):10617. doi:10.1111/j.1365-2990.2003.00521.x 58. De Groot CJ, et al. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p) reactive lesions. Brain. Aug 2001;124(Pt 8):163545. doi:10.1093/brain/124.8.1635 59. Kipp M, et al. Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets. Aug 2012;11(5):50617. doi:10.2174/187152712801661248 60. van der Valk P, et al. Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol. Feb 2000;26(1):2-10. doi:10.1046/j.1365-2990.2000.00217.x 61. Giles DA, et al. Myeloid cell plasticity in the evolution of central nervous system autoimmunity. Ann Neurol. Jan 2018;83(1):131-141. doi:10.1002/ ana.25128 62. Vogel DY, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation. Mar 4 2013;10:35. doi:10.1186/1742-2094-10-35 63. Bo L. The histopathology of grey matter demyelination in multiple sclerosis. Acta Neurol Scand Suppl. 2009;120(189):51-7. doi:10.1111/ j.1600-0404.2009.01216.x 64. Guilarte TR. TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther. Feb 2019;194:44-58. doi:10.1016/j.pharmthera.2018.09.003 65. Matthews PM, et al. Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis. Expert Opin Drug Discov. May 2015;10(5):557-70. doi:10.1517/1746 0441.2015.1032240 66. Datta G, et al. (11)C-PBR28 and (18)F-PBR111 DetectWhiteMatter Inflammatory Heterogeneity in Multiple Sclerosis. J NuclMed. Sep2017;58(9):14771482. doi:10.2967/jnumed.116.187161 67. Loth MK, et al. TSPO in a murine model of Sandhoff disease: presymptomatic marker of neurodegeneration and disease pathophysiology. Neurobiol Dis. Jan 2016;85:174-186. doi:10.1016/j. nbd.2015.11.001 68. Martin A, et al. Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab. Jan 2010;30(1):230-41. doi:10.1038/jcbfm.2009.205 69. Ratchford JN, et al. Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol. Jun 2012;259(6):1199-205. doi:10.1007/ s00415-011-6337-x 70. Sucksdorff M, et al. Evaluation of the Effect of Fingolimod Treatment on Microglial Activation Using Serial PET Imaging in Multiple Sclerosis. J Nucl Med. Oct 2017;58(10):1646-1651. doi:10.2967/ jnumed.116.183020 71. Bunai T, et al. Neuroinflammation following disease modifying therapy in multiple sclerosis: A pilot positron emission tomography study. J Neurol Sci. Feb 15 2018;385:30-33. doi:10.1016/j. jns.2017.12.004 72. van der Knaap MS, et al. Leukodystrophies: a proposedclassificationsystembasedonpathological changes and pathogenetic mechanisms. Acta Neuropathol. Sep 2017;134(3):351-382. doi:10.1007/s00401-017-1739-1 73. Mittelbronn M, et al. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol. Mar 2001;101(3):249-55. doi:10.1007/s004010000284 74. Hase Y, et al. Whitematter capillaries in vascular and neurodegenerative dementias. Acta Neuropathol Commun. Feb 7 2019;7(1):16. doi:10.1186/s40478-
RkJQdWJsaXNoZXIy MTk4NDMw