Erik Nutma

58 Chapter 2 019-0666-x 75. Bo L, et al. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. Jul 2003;62(7):723-32. doi:10.1093/ jnen/62.7.723 76. Brink BP, et al. The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J Neuropathol Exp Neurol. Feb 2005;64(2):147-55. doi:10.1093/jnen/64.2.147 77. van Horssen J, et al. The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol. Apr 2007;66(4):321-8. doi:10.1097/ nen.0b013e318040b2de 78. Lucchinetti CF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. Dec 8 2011;365(23):2188-97. doi:10.1056/ NEJMoa1100648 79. Howell OW, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. Sep 2011;134(Pt 9):275571. doi:10.1093/brain/awr182 80. Absinta M, et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. Jul 7 2015;85(1):1828. doi:10.1212/WNL.0000000000001587 81. Politis M, et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology. Aug 7 2012;79(6):523-30. doi:10.1212/WNL.0b013e3182635645 82. Herranz E, et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann Neurol. Nov 2016;80(5):776-790. doi:10.1002/ ana.24791 83. Sethi V, et al. Slowly eroding lesions in multiple sclerosis. Mult Scler. Mar 2017;23(3):464-472. doi:10.1177/1352458516655403 84. Elliott C, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler. Dec 2019;25(14):1915-1925. doi:10.1177/1352458518814117 85. Veronese M, et al. Kinetic modelling of [(11)C] PBR28 for 18 kDa translocator protein PET data: A validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab. Jul 2018;38(7):1227-1242. doi:10.1177/0271678X17712388 86. Mann DM, et al. Quantitative changes in cerebral cortical microvasculature in ageing and dementia. Neurobiol Aging. Sep-Oct 1986;7(5):321-30. doi:10.1016/0197-4580(86)90158-2 87. Wimberley C, et al. Impact of Endothelial 18-kDa Translocator Protein on the Quantification of (18) F-DPA-714. J Nucl Med. Feb 2018;59(2):307-314. doi:10.2967/jnumed.117.195396 88. Daugherty DJ, et al. The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis. Sci Rep. Mar 1 2016;6:22556. doi:10.1038/srep22556 89. Liddelow SA, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. Jan 26 2017;541(7638):481-487. doi:10.1038/ nature21029 90. Ryu JK, et al. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis. Nov 2005;20(2):550-61. doi:10.1016/j.nbd.2005.04.010 91. Veiga S, et al. Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity. J Neurosci Res. Apr 1 2005;80(1):129-37. doi:10.1002/jnr.20430 92. Agnello D, et al. Increased peripheral benzodiazepine binding sites and pentraxin 3 expression in the spinal cord during EAE: relation to inflammatory cytokines and modulation by dexamethasone and rolipram. J Neuroimmunol. Sep 22 2000;109(2):105-11. doi:10.1016/s01655728(00)00279-4 93. Chen MK, et al. Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination. Toxicol Sci. Jun 2006;91(2):532-9. doi:10.1093/ toxsci/kfj172 94. Le Goascogne C, et al. Neurosteroid progesterone is up-regulated in the brain of jimpy and shiverer mice. Glia. Jan 1 2000;29(1):14-24. doi:10.1002/ ( s i c i ) 1098 - 1136 ( 20000101 ) 29 : 1<14 : : a i d - glia2>3.3.co;2-e 95. Hendrickx DAE, et al. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. Aug 15 2017;309:12-22. doi:10.1016/j. jneuroim.2017.04.007 96. Okello A, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. Jan 6 2009;72(1):56-62. doi:10.1212/01.wnl.0000338622.27876.0d

RkJQdWJsaXNoZXIy MTk4NDMw