Ridderprint

Chapter 7 152 While this issue could be prevented by training the model on more objective operationalization of candidate success, most HRM data will include its own specific biases. For example, data on performance ratings will include not only the historic preferences of recruiters (i.e., only hired employees received ratings), but also the biases of supervisors and other assessors in the performance evaluation processes. Similar and other biases may occur in data regarding promotions, training courses, talent assessments, or compensation. If we use these data to train our models and systems, we would effectively automate our historic biases. Such issues greatly hinder the implementation of (predictive) people analytics without causing compliance and ethical issues. 7.3.3.4 Corporate Social Responsibility versus Free Choice Corporate social responsibility also needs to be discussed in light of people analytics. People analytics could allow HRM departments to work on social responsibility agendas in many ways. For instance, people analytics can help to demonstrate what causes or prevents (un)ethical behavior among employees, to what extent HRM policies and practices are biased, to what extent they affect work-life balance, or how employees can be stimulated to make decisions that benefit their health and well-being. Regarding the latter case, a great practical example comes from Google’s people analytics team. They uncovered that employees could be stimulated to eat more healthy snacks by color-coding snack containers, and that smaller cafeteria plate sizes could prevent overconsumption and food loss (ABC News, 2013). However, one faces difficult ethical dilemmas in this situation. Is it organizations’ responsibility to nudge employees towards good behavior? Who determines what good entails? Should employees be made aware of these nudges? What do we consider an acceptable tradeoff between free choice and societal benefits? When we consider the potential of predictive analytics in this light, the discussion gets even more complicated. For instance, imagine that organizations could predict work accidents based on historic HRM information, should they be forbidden, allowed, or required to do so? What about health issues, such as stress and burnout? What would be an acceptable accuracy for such models? How do we feel about false positive and false negatives? Could they use individual-level information if that resulted in benefits for employees? In conclusion, analytics in the HRM domain quickly encounters issues related to privacy, compliance, and ethics. In bringing (predictive) analytics into the HRM domain, we should be careful not to copy and automate the historic biases present in HRM processes and data. The imbalance in the employment relationship puts the responsibility in the hands of organizational agents. The general message is that what can be done with people analytics may differ from what should be done from a corporate social responsibility perspective. The spread of people analytics depends on our collective ability to harness its power ethically and responsibility, to go beyond the legal requirements and champion both the privacy as well as the interests of employees and the wider society. A balanced approach to people analytics – with benefits beyond financial gain for the organization – will be needed to make people analytics accepted by society, and not just another management tool.

RkJQdWJsaXNoZXIy MTk4NDMw