128 Chapter 6 References 1. Raju TNK, Pemberton VL, Saigal S, Blaisdell CJ, Moxey-Mims M, Buist S. Long-Term Healthcare Outcomes of PretermBirth: An Executive Summary of a Conference Sponsored by the National Institutes of Health. The Journal of pediatrics. 2017;181:309-18.e1. 2. Kerkhof GF, Breukhoven PE, Leunissen RW, Willemsen RH, Hokken-Koelega AC. Does preterm birth influence cardiovascular risk in early adulthood? The Journal of pediatrics. 2012;161(3):3906.e1. 3. Sipola-Leppanen M, Vaarasmaki M, Tikanmaki M, Matinolli HM, Miettola S, Hovi P, et al. Cardiometabolic risk factors in young adults who were born preterm. American journal of epidemiology. 2015;181(11):861-73. 4. Forsum EK, Flinke E, Olhager E, body composition study g. Premature birth was not associated with increased body fatness in four-year-old boys and girls. Acta paediatrica (Oslo, Norway : 1992). 2020;109(2):327-31. 5. Johnson MJ, Wootton SA, Leaf AA, Jackson AA. Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis. Pediatrics. 2012;130(3):e640-9. 6. Liu P, Ma F, Lou H, Liu Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health. 2013;13:629. 7. Ramirez-Velez R, Correa-Bautista JE, Sanders-Tordecilla A, Ojeda-Pardo ML, Cobo-Mejia EA, Castellanos-Vega RDP, et al. Percentage of Body Fat and Fat Mass Index as a Screening Tool for Metabolic Syndrome Prediction in Colombian University Students. Nutrients. 2017;9(9). 8. Wrottesley SV, Pisa PT, Micklesfield LK, Pettifor JM, Norris SA. A comparison of body composition estimates using dual-energy X-ray absorptiometry and air-displacement plethysmography in South African neonates. European journal of clinical nutrition. 2016;70(11):1254-8. 9. Fields DA, Demerath EW, Pietrobelli A, Chandler-Laney PC. Body composition at 6 months of life: comparison of air displacement plethysmography and dual-energy X-ray absorptiometry. Obesity (Silver Spring, Md). 2012;20(11):2302-6. 10. Barbour LA, Hernandez TL, Reynolds RM, Reece MS, Chartier-Logan C, Anderson MK, et al. Striking differences in estimates of infant adiposity by new and old DXA software, PEAPOD and skin-folds at 2 weeks and 1 year of life. Pediatric obesity. 2016;11(4):264-71. 11. Chen LW, Tint MT, Fortier MV, Aris IM, Shek LP, Tan KH, et al. Which anthropometric measures best reflect neonatal adiposity? International journal of obesity (2005). 2018;42(3):501-6. 12. Schmelzle HR, Fusch C. Body fat in neonates and young infants: validation of skinfold thickness versus dual-energy X-ray absorptiometry. The American journal of clinical nutrition. 2002;76(5):1096-100. 13. Deierlein AL, Thornton J, Hull H, Paley C, Gallagher D. An anthropometric model to estimate neonatal fat mass using air displacement plethysmography. Nutrition & metabolism. 2012;9:21. 14. Koo WW, Walters JC, Hockman EM. Body composition in neonates: relationship between measured and derived anthropometry with dual-energy X-ray absorptiometry measurements. Pediatr Res. 2004;56(5):694-700. 15. Demerath EW, Fields DA. Body composition assessment in the infant. Am J Hum Biol. 2014;26(3):291-304. 16. Daly-Wolfe KM, Jordan KC, Slater H, Beachy JC, Moyer-Mileur LJ. Mid-arm circumference is a reliable method to estimate adiposity in preterm and term infants. Pediatr Res. 2015;78(3):336-41. 17. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13(1):59. 18. Zozaya C, Diaz C, Saenz de Pipaon M. How Should We Define Postnatal Growth Restriction in Preterm Infants? Neonatology. 2018;114(2):177-80. 19. Urlando A, Dempster P, Aitkens S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatric research. 2003;53(3):486-92.
RkJQdWJsaXNoZXIy MTk4NDMw