164 Chapter 7 21 Villar, J. et al. Body Composition at Birth and Its Relationship with Neonatal Anthropometric Ratios: The Newborn Body Composition Study of the Intergrowth-21 St Project. Pediatric Research82, 305-316 (2017). 22 Larcade, J. et al. Estimation of Fat-Free Mass at Discharge in Preterm Infants Fed with Optimized Feeding Regimen. Journal of Pediatric Gastroenterology and Nutrition64, 115-118 (2017). 23 Simon, L. et al. Determinants of Body Composition in Preterm Infants at the Time of Hospital Discharge. American Journal of Clinical Nutrition100, 98-104 (2014). 24 Daly-Wolfe, K.M., Jordan, K. C., Slater, H., Beachy, J. C. &Moyer-Mileur, L. J.Mid-ArmCircumference Is a Reliable Method to Estimate Adiposity in Preterm and Term Infants. Pediatr Res78, 336-341 (2015). 25 Pereira-Da-Silva, L., Abecasis, F., Virella, D. & Videira-Amaral, J. M. Upper Arm Anthropometry Is Not a Valid Predictor of Regional Body Composition in Preterm Infants. Neonatology95, 74-79 (2009). 26 Schmelzle, H. R. & Fusch, C. Body Fat in Neonates and Young Infants: Validation of Skinfold Thickness Versus Dual-Energy X-Ray Absorptiometry. American Journal of Clinical Nutrition 76, 1096-1100 (2002). 27 Dung, N. Q., Fusch, G., Armbrust, S., Jochum, F. & Fusch, C. Body Composition of Preterm Infants Measured During the First Months of Life: Bioelectrical Impedance Provides Insignificant Additional Information Compared to Anthropometry Alone. Eur J Pediatr 166, 215-222 (2007). 28 Raghavan, C. V. et al. Estimation of Total Body Water in Very-Low-Birth-Weight Infants by Using Anthropometry with and without Bioelectrical Impedance and H2[18o]. American Journal of Clinical Nutrition68, 668-674 (1998). 29 Nagel, E. et al. Can Ultrasound Measures of Muscle and Adipose Tissue Thickness Predict Body Composition of Premature Infants in the Neonatal Intensive Care Unit? Journal of Parenteral and Enteral Nutrition (2020). 30 Dyke, J. P., Garfinkel, A. C., Groves, A. M. & Kovanlikaya, A. High-Resolution Rapid Neonatal Whole-Body Composition Using 3.0 Tesla Chemical Shift Magnetic Resonance Imaging. Pediatr Res 83, 638-644 (2018). 31 Forsum, E., Olhager, E. & Tornqvist, C. An Evaluation of the Pea Pod System for Assessing Body Composition of Moderately Premature Infants. Nutrients 8, 238 (2016). 32 Roggero, P. et al. Evaluation of Air-Displacement Plethysmography for Body Composition Assessment in Preterm Infants. Pediatric Research72, 316-320 (2012). 33 Kushner, R. F., Schoeller, D. A., Fjeld, C. R. &Danford, L. Is the Impedance Index (Ht2/R) Significant in Predicting Total Body Water? American Journal of Clinical Nutrition56, 835-839 (1992). 34 Tang, W., Ridout, D. &Modi, N. Influence of Respiratory Distress Syndrome on Body Composition after Preterm Birth. Archives of Disease in Childhood: Fetal and Neonatal Edition77, F28-F31 (1997). 35 Collins, C. T. et al. Prediction of Body Water Compartments in Preterm Infants by Bioelectrical Impedance Spectroscopy. Eur J Clin Nutr 67 Suppl 1, S47-53 (2013). 36 Frondas-Chauty, A., Louveau, I., Le Huerou-Luron, I., Roze, J. C. & Darmaun, D. Air-Displacement Plethysmography for Determining Body Composition in Neonates: Validation Using Live Piglets. Pediatr Res 72, 26-31 (2012). 37 Rudolph, B. C., Stahly, T. S. & Cromwell, G. L. Estimation of Body Composition of Neonatal Pigs Via Deuterium Oxide Dilution: Validation of Technique. J Anim Sci 66, 53-61 (1988). 38 Brunton, J. A., Bayley, H. S. & Atkinson, S. A. Validation and Application of Dual-Energy X-Ray Absorptiometry to Measure Bone Mass and Body Composition in Small Infants. Am J Clin Nutr 58, 839-845 (1993). 39 Picaud, J. C., Rigo, J., Nyamugabo, K., Milet, J. & Senterre, J. Evaluation of Dual-Energy X-Ray Absorptiometry for Body-Composition Assessment in Piglets and Term Human Neonates. Am J Clin Nutr 63, 157-163 (1996).
RkJQdWJsaXNoZXIy MTk4NDMw