Mia Thomaidou

Chapter 3 – Comprehensive review 105 68. Elsenbruch S, Schmid J, Bäsler M, Cesko E, Schedlowski M, Benson S. How positive and negative expectations shape the experience of visceral pain: an experimental pilot study in healthy women. Neurogastroenterology & Motility. 2012;24(10):914-e460. doi:10.1111/j.1365 69. Craig AD. Interoception: the sense of the physiological condition of the body. Current opinion in neurobiology. 2003;13(4):500-505. 70. Linnman C, Rougemont-Bücking A, Beucke JC, Zeffiro TA, Milad MR. Unconditioned responses and functional fear networks in human classical conditioning. Behavioural Brain Research. 2011;221(1):237-245. doi:10.1016/J.BBR.2011.02.045 71. Wiech K, Lin C shu, Brodersen KH, Bingel U, Ploner M, Tracey I. Anterior insula integrates information about salience into perceptual decisions about pain. The Journal of neuroscience. 2010;30(48):16324-16331. doi:10.1523/JNEUROSCI.2087-10.2010 72. Veldhuijzen DS, Greenspan JD, Kim JH, Lenz FA. Altered pain and thermal sensation in subjects with isolated parietal and insular cortical lesions. European Journal of Pain. 2010;14(5):535.e1-535.e11. doi:10.1016/j.ejpain.2009.10.002 73. Auvray M, Myin E, Spence C. The sensory-discriminative and affectivemotivational aspects of pain. Neuroscience and Biobehavioral Reviews. 2010;34(2):214-223. doi:10.1016/j.neubiorev.2008.07.008 74. Vogt BA. Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy. 2016;74:28-46. doi:10.1016/j.jchemneu.2016.01.010 75. Misra G, Coombes SA. Neuroimaging Evidence of Motor Control and Pain Processing in the Human Midcingulate Cortex. Cerebral Cortex. 2015;25(7):1906-1919. doi:10.1093/cercor/bhu001 76. Pereira MG, de Oliveira L, Erthal FS, et al. Emotion affects action: Midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals. Cognitive, Affective, & Behavioral Neuroscience. 2010;10(1):94-106. doi:10.3758/CABN.10.1.94 77. Hamaguchi T, Kano M, Kanazawa M, Itoh M, Yanai K, Fukudo S. Effects of preceding stimulation on brain activation in response to colonic distention in humans. Psychosomatic medicine. 2013;75(5):453-462. doi:10.1097/PSY.0b013e3182926682 78. Elsenbruch S. Abdominal pain in Irritable Bowel Syndrome: A review of putative psychological, neural and neuro-immune mechanisms. Brain, Behavior, and Immunity. 2011;25(3):386-394. doi:10.1016/J.BBI.2010.11.010 79. Vogt BA. Inflammatory bowel disease: perspectives from cingulate cortex in the first brain. Neurogastroenterology & Motility. 2013;25(2):93-98. doi:10.1111/nmo.12067 80. Kornelsen J, Mackey S. Potential clinical applications for spinal functional MRI. Current Pain and Headache Reports. 2007;11(3):165-170. doi:10.1007/s11916-007-01864 81. Moffitt MA, Dale BM, Duerk JL, Grill WM. Functional magnetic resonance imaging of the human lumbar spinal cord. Journal of Magnetic Resonance Imaging. 2005;21(5):527-535. doi:10.1002/jmri.20314 82. Bingel U, Tracey I. Imaging CNS Modulation of Pain in Humans. Physiology. 2008;23(6):371-380. doi:10.1152/physiol.00024.2008 83. Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience. 2010;4:186. doi:10.3389/fnhum.2010.00186 84. Peng W, Babiloni C, Mao Y, Hu Y. Subjective pain perception mediated by alpha rhythms. Biological Psychology. 2015;109:141-150. doi:10.1016/j.biopsycho.2015.05.004

RkJQdWJsaXNoZXIy MTk4NDMw