Chapter 7 – Pharmacological fMRI 251 the performance of non-emotional memory tasks. Neurobiology of Learning and Memory. 2011;95(4):505-509. doi:10.1016/J.NLM.2011.02.017 68. Goff DC. D-Cycloserine: An Evolving Role in Learning and Neuroplasticity in Schizophrenia. Schizophrenia Bulletin. 2012;38(5):936-941. doi:10.1093/schbul/sbs012 69. Ledgerwood L, Richardson R, Cranney J. d-cycloserine facilitates extinction of learned fear: Effects on reacquisition and generalized extinction. Biological Psychiatry. 2005;57(8):841-847. doi:10.1016/j.biopsych.2005.01.023 70. Millecamps M, Centeno MV, Berra HH, et al. d-Cycloserine reduces neuropathic pain behavior through limbic NMDA-mediated circuitry. Pain. 2007;132(12):108-123. doi:10.1016/j.pain.2007.03.003 71. Schmid J, Bingel U, Ritter C, et al. Neural underpinnings of nocebo hyperalgesia in visceral pain: A fMRI study in healthy volunteers. NeuroImage. 2015;120:114-122-114-122. doi:10.1016/j.neuroimage.2015.06.060 72. Thomaidou MA, Veldhuijzen DS, Meulders A, Evers AWM. An experimental investigation into the mediating role of pain-related fear in boosting nocebo hyperalgesia. Pain. 2021;162(1):287-299. doi:10.1097/j.pain.0000000000002017 73. Tinnermann A, Geuter S, Sprenger C, Finsterbusch J, Büchel C. Interactions between brain and spinal cord mediate value effects in nocebo hyperalgesia. Science. 2017;358:105-108. 74. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. The American journal of psychiatry. 2007;164(10):1476-1488. doi:10.1176/appi.ajp.2007.07030504 75. Pissiota A, Frans O, Michelgard A, et al. Amygdala and anterior cingulate cortex activation during affective startle modulation: a PET study of fear. European Journal of Neuroscience. 2003;18(5):1325-1331. doi:10.1046/j.1460-9568.2003.02855.x 76. Ellerbrock I, Wiehler A, Arndt M, May A. Nocebo context modulates longterm habituation to heat pain and influences functional connectivity of the operculum. Pain. 2015;156(11):2222-2233-2222-2233. doi:10.1097/j.pain.0000000000000297 77. Keltner JR. Isolating the Modulatory Effect of Expectation on Pain Transmission: A Functional Magnetic Resonance Imaging Study. Journal of Neuroscience. Published online 2006. doi:10.1523/JNEUROSCI.4463-05.2006 78. Rodriguez-Raecke R, Doganci B, Breimhorst M, et al. Insular cortex activity is associated with effects of negative expectation on nociceptive long-term habituation. Journal of Neuroscience. 2010;30(34):11363-11368. doi:10.1523/JNEUROSCI.2197-10.2010 79. Egorova N, Benedetti F, Gollub RL, Kong J. Between placebo and nocebo: response to control treatment is mediated by amygdala activity and connectivity. Eur J Pain. 2020;24(3):580-592. doi:10.1002/ejp.1510 80. Timmers I, López-Solà M, Heathcote LC, et al. Amygdala functional connectivity mediates the association between catastrophizing and threat-safety learning in youth with chronic pain. PAIN. 2021;162(12). doi:10.1097/j.pain.0000000000002410 81. Donohue SE, Wendelken C, Crone EA, Bunge SA. Retrieving rules for behavior from long-term memory. NeuroImage. 2005;26(4):1140-1149. doi:10.1016/j.neuroimage.2005.03.019 82. Sakagami M, Tsutsui K ichiro, Lauwereyns J, Koizumi M, Kobayashi S, Hikosaka O. A Code for Behavioral Inhibition on the Basis of Color, But Not Motion, in Ventrolateral Prefrontal Cortex of Macaque Monkey. J Neurosci. 2001;21(13):4801-4808. doi:10.1523/JNEUROSCI.21-13-04801.2001 83. Salmi J, Nyberg L, Laine M. Working memory training mostly engages generalpurpose large-scale networks for learning. Neuroscience & Biobehavioral Reviews. 2018;93:108122. doi:10.1016/j.neubiorev.2018.03.019
RkJQdWJsaXNoZXIy MTk4NDMw