Hylke Salverda

166 Chapter 9 comparing algorithms for closed-loop automatic oxygen control. Archives of disease in childhood Fetal and neonatal edition 2019:fetalneonatal-2019-317029. 18. Sturrock S, Ambulkar H, Williams EE, et al. A randomised crossover trial of closed loop automated oxygen control in preterm, ventilated infants.n/a(n/a) 19. Ali SK, Jayakar RV, Marshall AP, et al. Preliminary study of automated oxygen titration at birth for preterm infants. Archives of disease in childhood Fetal and neonatal edition 2022 20. Dargaville PA, Marshall AP, Ladlow OJ, et al. Automated control of oxygen titration in preterm infants on non-invasive respiratory support. Archives of disease in childhood Fetal and neonatal edition 2022;107(1):39-44. 21. Dargaville PA, Marshall AP, McLeod L, et al. Automation of oxygen titration in preterm infants: Current evidence and future challenges. Early human development 2021;162:105462. 22. Plottier GK, Wheeler KI, Ali SK, et al. Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory support. Arch Dis Child Fetal Neonatal Ed 2017;102(1):F37-F43. 23. Claure N, Bancalari E, D’Ugard C, et al. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics 2011;127(1):e76-83. 24. Claure N, D’Ugard C, Bancalari E. Automated adjustment of inspired oxygen in preterm infants with frequent fluctuations in oxygenation: a pilot clinical trial. J Pediatr 2009;155(5):640-5 e1-2. 25. Claure N, Gerhardt T, Everett R, et al. Closed-loop controlled inspired oxygen concentration for mechanically ventilated very low birth weight infants with frequent episodes of hypoxemia. Pediatrics 2001;107(5):1120-4. 26. van Kaam AH, Hummler HD, Wilinska M, et al. Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. J Pediatr 2015;167(3):545-50 e1-2. 27. Van Zanten HA, Kuypers K, Stenson BJ, et al. The effect of implementing an automated oxygen control on oxygen saturation in preterm infants. Arch Dis Child Fetal Neonatal Ed 2017;102(5):F395-F99. 28. Waitz M, Schmid MB, Fuchs H, et al. Effects of automated adjustment of the inspired oxygen on fluctuations of arterial and regional cerebral tissue oxygenation in preterm infants with frequent desaturations. J Pediatr 2015;166(2):240-4 e1. 29. Lal M, Tin W, Sinha S. Automated control of inspired oxygen in ventilated preterm infants: crossover physiological study. Acta Paediatr 2015;104(11):1084-9. 30. Schwarz CE, Kreutzer KB, Langanky L, et al. Randomised crossover trial comparing algorithms and averaging times for automatic oxygen control in preterm infants. Archives of disease in childhood Fetal and neonatal edition 2021 31. Severinghaus JW. Simple, accurate equations for human blood O2 dissociation computations. Journal of applied physiology: respiratory, environmental and exercise physiology 1979;46(3):599-602. 32. Stenson BJ. Achieved Oxygenation Saturations and Outcome in Extremely Preterm Infants. Clinics in perinatology 2019;46(3):601-10. 33. Lorch SA, Srinivasan L, Escobar GJ. Epidemiology of apnea and bradycardia resolution in premature infants. Pediatrics 2011;128(2):e366-73.

RkJQdWJsaXNoZXIy MTk4NDMw