Hylke Salverda

45 2 Automated oxygen control in preterm infants, how does it work and what to expect mechanical ventilation. Acta Paediatr 2014;103(9):928-33. 17. Urschitz MS, Horn W, Seyfang A, et al. Automatic control of the inspired oxygen fraction in preterm infants: a randomized crossover trial. Am J Respir Crit Care Med 2004;170(10):1095-100. 18. Claure N, Gerhardt T, Everett R, et al. Closed-Loop Controlled Inspired Oxygen Concentration for Mechanically Ventilated Very Low Birth Weight Infants With Frequent Episodes of Hypoxemia. Pediatrics 2001;107:1120-24. 19. Hutten MC, Goos TG, Ophelders D, et al. Fully automated predictive intelligent control of oxygenation (PRICO) in resuscitation and ventilation of preterm lambs. Pediatric research 2015;78(6):657-63. 20. Stephan. Sophie SpO2 Controller Supplemental Operating Manual, v1.3 ed.2015. 21. Dargaville PA, Sadeghi Fathabadi O, Plottier GK, et al. Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant. Arch Dis Child Fetal Neonatal Ed 2017;102(1):F31-F36. 22. Sadeghi Fathabadi O, Gale TJ, LimK, et al. Characterisation of the Oxygenation Response to Inspired Oxygen Adjustments in Preterm Infants. Neonatology 2016;109(1):37-43. 23. Jones JG, Lockwood GG, Fung N, et al. Influence of pulmonary factors on pulse oximeter saturation in preterm infants. Arch Dis Child Fetal Neonatal Ed 2016;101(4):F319-22. 24. Using time-oriented data abstraction methods to optimize oxygen supply for neonates. Conference on Artificial Intelligence in Medicine in Europe; 2001. Springer. 25. Abstracting steady qualitative descriptions over time from noisy, high-frequency data. Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making; 1999. Springer. 26. Schwarz CE, Kidszun A, Bieder NS, et al. Is faster better? A randomised crossover study comparing algorithms for closed-loop automatic oxygen control. Archives of disease in childhood Fetal and neonatal edition 2019:fetalneonatal-2019-317029. 27. Hallenberger A, Poets CF, Horn W, et al. Closed-loop automatic oxygen control (CLAC) in preterm infants: a randomized controlled trial. Pediatrics 2014;133(2):e379-85. 28. Claure N, D’Ugard C, Bancalari E. Automated adjustment of inspired oxygen in preterm infants with frequent fluctuations in oxygenation: a pilot clinical trial. J Pediatr 2009;155(5):640-5 e1-2. 29. Claure N, Bancalari E, D’Ugard C, et al. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics 2011;127(1):e76-83. 30. Waitz M, Schmid MB, Fuchs H, et al. Effects of automated adjustment of the inspired oxygen on fluctuations of arterial and regional cerebral tissue oxygenation in preterm infants with frequent desaturations. J Pediatr 2015;166(2):240-4 e1. 31. van Kaam AH, Hummler HD, Wilinska M, et al. Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. J Pediatr 2015;167(3):545-50 e1-2. 32. Lal M, Tin W, Sinha S. Automated control of inspired oxygen in ventilated preterm infants: crossover physiological study. Acta Paediatr 2015;104(11):1084-9. 33. Van Zanten HA, Kuypers K, Stenson BJ, et al. The effect of implementing an automated oxygen control on oxygen saturation in preterm infants. Arch Dis Child Fetal Neonatal Ed 2017;102(5):F395-F99. 34. Gajdos M, Waitz M, Mendler MR, et al. Effects of a new device for automated closed loop

RkJQdWJsaXNoZXIy MTk4NDMw