Wouter Woud

Chapter 4 106 15. Xu X, Barreiro K, Musante L, Kretz O, Lin H, Zou H, et al. Management of Tamm–Horsfall Protein for Reliable Urinary Analytics. Proteomics - Clin Appl. 2019;13(6):1-10. doi:10.1002/ prca.201900018 16. Fernández-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA. TammHorsfall protein and urinary exosome isolation. Kidney Int. 2010;77(8):736-742. doi:10.1038/ ki.2009.550 17. Stam J, Bartel S, Bischoff R, Wolters JC. Isolation of extracellular vesicles with combined enrichment methods. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1169. doi:10.1016/j.jchromb.2021.122604 18. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698-7710. doi:10.1021/nn402232g 19. Pang B, Zhu Y, Ni J, Ruan J, Thompson J, Malouf D, et al. Quality assessment and comparison of plasma-derived extracellular vesicles separated by three commercial kits for prostate cancer diagnosis. Int J Nanomedicine. 2020;15:10241-10256. doi:10.2147/IJN.S283106 20. Linares R, Tan S, Gounou C, Arraud N, Brisson AR. High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles. 2015;4(1). doi:10.3402/jev.v4.29509 21. Botha J, Pugsley HR, Handberg A. Conventional, high-resolution and imaging flow cytometry: Benchmarking performance in characterisation of extracellular vesicles. Biomedicines. 2021;9(2):1-24. doi:10.3390/biomedicines9020124 22. Görgens A, Bremer M, Ferrer-Tur R, Murke F, Tertel T, Horn PA, et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J Extracell Vesicles. 2019;8(1):1587567. doi:10.1080/20013078.2019.1587567 23. Woud WW, Pol E van der, Mul E, Hoogduijn MJ, Baan CC, Boer K, et al. An imaging flow cytometry-based methodology for the analysis of single extracellular vesicles in unprocessed human plasma. Commun Biol. 2022;40(1):633. doi:10.1101/2022.02.24.481807 24. Droste M, Tertel T, Jeruschke S, Dittrich R, Kontopoulou E, Walkenfort B, et al. Single Extracellular Vesicle Analysis Performed by Imaging Flow Cytometry and Nanoparticle Tracking Analysis Evaluate the Accuracy of Urinary Extracellular Vesicle Preparation Techniques Differently. Int J Mol Sci Artic Int J Mol Sci. 2021;22(22):12436. doi:10.3390/ijms222212436 25. Lannigan J, Erdbruegger U. Imaging flow cytometry for the characterization of extracellular vesicles. Methods. 2017;112:55-67. doi:10.1016/j.ymeth.2016.09.018 26. Mathieu M, Névo N, Jouve M, Valenzuela JI, Maurin M, Verweij FJ, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. doi:10.1038/s41467-021-24384-2 27. Royo F, Zuñiga-Garcia P, Sanchez-Mosquera P, Egia A, Perez A, Loizaga A, et al. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J Extracell Vesicles. 2016;5(1). doi:10.3402/jev.v5.29497 28. Amnis. IDEAS® Image Data Exploration and Analysis Software User’s Manual. 2013;(July):231. https://www.luminexcorp.com/imagestreamx-mk-ii/?wpdmdl=41965 29. de Rond L, Coumans FAW, Nieuwland R, van Leeuwen TG, van der Pol E. Deriving Extracellular Vesicle Size From Scatter Intensities Measured by Flow Cytometry. Curr Protoc Cytom. 2018;86(1):e43. doi:10.1002/cpcy.43

RkJQdWJsaXNoZXIy MTk4NDMw