Wouter Woud

An Imaging Flow Cytometry-Based Methodology for the Analysis of Single Extracellular Vesicles 3 63 18 Welsh, J. A. et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles 9, 1713526, doi:10.1080/20013078.2 020.1713526 (2020). 19 Gardiner, C. et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of Extracellular Vesicles 5, 10.3402/jev. v3405.32945, doi:10.3402/jev.v5.32945 (2016). 20 van der Pol, E. et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12, 1182-1192, doi:10.1111/jth.12602 (2014). 21 Gorgens, A. et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J Extracell Vesicles 8, 1587567, doi:10.1080/20013078.2019.1587567 2019). 22 Lener, T. et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 4, 30087, doi:30087 (2015). 23 Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2, doi:10.3402/jev.v2i0.20360 (2013). 24 Larson, M. C., Luthi, M. R., Hogg, N. & Hillery, C. A. Calcium-phosphate microprecipitates mimic microparticles when examined with flow cytometry. Cytometry A 83, 242-250, doi:10.1002/cyto.a.22222 (2013). 25 Gyorgy, B. et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117, e39-48, doi:blood-2010-09-307595 (2011). 26 Erdbrugger, U. et al. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A 85, 756-770, doi:10.1002/cyto.a.22494 (2014). 27 Headland, S. E., Jones, H. R., D’Sa, A. S., Perretti, M. & Norling, L. V. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep 4, 5237, doi:srep05237 (2014). 28 Lannigan, J. & Erdbruegger, U. Imaging flow cytometry for the characterization of extracellular vesicles. Methods 112, 55-67, doi: 10.1016/j.ymeth.2016.09.018. (2017). 29 Mastoridis, S. et al. Multiparametric Analysis of Circulating Exosomes and Other Small Extracellular Vesicles by Advanced Imaging Flow Cytometry. Front Immunol 9, 1583, doi:10.3389/fimmu.2018.01583 (2018). 30 Ricklefs, F. L. et al. Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. J Extracell Vesicles 8, 1588555, doi:10 .1080/20013078.2019.1588555 (2019). 31 Shao, H. et al. New Technologies for Analysis of Extracellular Vesicles. Chem Rev 118, 19171950, doi:10.1021/acs.chemrev.7b00534 (2018). 32 de Rond, L., Coumans, F. A. W., Nieuwland, R., van Leeuwen, T. G. & van der Pol, E. Deriving Extracellular Vesicle Size From Scatter Intensities Measured by Flow Cytometry. Curr Protoc Cytom 86, e43, doi:10.1002/cpcy.43 (2018). 33 Sandau, U. S. et al. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J Extracell Vesicles 10, e12028, doi:10.1002/ jev2.12028 (2020).

RkJQdWJsaXNoZXIy MTk4NDMw