Adriënne van der Schoor

disinfected when a known HRMO carrier was admitted to the room. Our study identified a high percentage of unknown ESBL-E carriers, highlighting the fact that HRMO carriers are missed. Consequently, some rooms are only cleaned when disinfection would have been appropriate, potentially leaving HRMO reservoirs behind. Therefore, a decrease in exposure to the environment, means less exposure to pathogenic organisms of other patients. Since the exposure to the environment is an important factor for HRMO acquisition, the impact of the transition to single-occupancy rooms on the m2 patients were exposed to is an important outcome of this study. While the majority of patients positive both at admission and discharge had indistinguishable strains, for two patients the discharge strain was not identical to the admission strain. This can be explained by acquisition of a different strain during hospitalization, or by carriage of multiple strain types, of which only one was detected at admission. To identify possible different strain types, or species, with ESBL-genes, it is recommended to pick and analyze multiple colonies, even when they are morphologically identical. Interspecies plasmid transfer in the gut is possible through plasmid carriers, which could possibly lead to phenotypic resistance, among which the ESBL phenotype. However we did not perform plasmid analyses in the strains from these two patients. We determined a prevalence of ESBL-E at admission of 4.4% in the old building, and 6.5% in the new building, which is in agreement with previous reports on the prevalence of ESBL-E in the Netherlands, with ranges between 4.5% and 8.6% in 2018 (26-28). Of the 51 identified ESBL-E carriers, 34 were positive upon admission. The majority of these patients had no recent hospitalizations, suggesting that the majority of ESBL-E was community acquired. Twelve carriers were only positive at admission, indicating loss of the ESBL-E during hospitalization. A possible explanation is that they received antibiotic therapy during hospitalization, however, it is also possible that these were false-negative results. The high number of unidentified ESBL-E carriers can partly be explained by the fact that the riskassessment questions asked at admission were unable to identify 49 out of the 51 (96.1%) ESBL-E carriers. Six of the 49 patients had already an electronic label in the EHR as being an ESBL-E carrier due to previous ESBL-E positive cultures and were thus known carriers to the hospital regardless of the risk-assessment outcome. Van Hout et al. (17) compared the observed prevalence of ESBL-E carriers newly identified via the risk assessment to the perceived ESBL-E carriage rate based on epidemiological studies in the Netherlands. They determined that the risk-assessment identified less than 1% of all ESBL-E carriers (17). A case control study in MRSA carriers without known risk factors found previously unknown risk factors, explaining 83% of the MRSA of unknown origin (29). Bastiaens et al (30) identified that active surveillance in patients hospitalized for ≥14 days can be used to identify asymptomatic HRMO colonization. Even though this added screening can help identify previously unknown carriers, after 14 days transmission to other patients or the environment could have already occurred within the hospital. Therefore, it should also be considered to determine additional risk factors for ESBL-E carriage, for example questions about travel history (31-34) or antibiotic usage in the last 90 days, specifically targeting use of fluoroquinolones and beta-lactams (28, 32, 35). An improved risk-assessment could help decrease the number of unidentified carriers at admission and hence prevent transmission to other patients within the hospital. 2 39 Effect of single-occupancy rooms on ESBL-E acquisition

RkJQdWJsaXNoZXIy MTk4NDMw