Annelienke van Hulst

236 Chapter 7 18. Gillespie BW, Chen Q, Reichert H, et al: Estimating population distributions when some data are below a limit of detection by using a reverse Kaplan-Meier estimator. Epidemiology 21 Suppl 4:S64-70, 2010 19. van Houwelingen HC: Dynamic Prediction by Landmarking in Event History Analysis. Scandinavian Journal of Statistics 34:70-85, 2007 20. Bachmann PS, Gorman R, Papa RA, et al: Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res 67:4482-90, 2007 21. O’Connor L, Strasser A, O’Reilly LA, et al: Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17:384-95, 1998 22. Perroteau I, Netchitailo P, Delarue C, et al: The effect of the antimineralocorticoid RU 28318 on aldosterone biosynthesis in vitro. J Steroid Biochem 20:853-6, 1984 23. Forestier E, Heyman M, Andersen MK, et al: Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. Br J Haematol 140:665-72, 2008 24. Schimmer BP, Funder JW: Adrenocorticotropic Hormone, Adrenal Steroids, and the Adrenal Cortex, in Brunton LL, Hilal-Dandan R, Knollmann BC (eds): Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 13e. New York, NY, McGraw-Hill Education, 2017 25. Kaspers GJL, Veerman AJP, PoppSnijders C, et al: Comparison of the antileukemic activity in vitro of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. Medical and Pediatric Oncology 27:114-121, 1996 26. Styczynski J, Wysocki M, Balwierz W, et al: In vitro comparative antileukemic activity of various glucocorticoids in childhood acute leukemia. Neoplasma 49:178-83, 2002 27. Ito C, Evans WE, McNinch L, et al: Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. J Clin Oncol 14:2370-6, 1996 28. Shurtleff SA, Buijs A, Behm FG, et al: TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9:1985-9, 1995 29. Sun C, Chang L, Zhu X: Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget 8:35445-35459, 2017 30. Pieters R, de Groot-Kruseman H, Van der Velden V, et al: Successful Therapy Reduction and Intensification for Childhood Acute Lymphoblastic Leukemia Based on Minimal Residual Disease Monitoring: Study ALL10 From the Dutch Childhood Oncology Group. J Clin Oncol 34:2591-601, 2016 31. van Weert L, Buurstede JC, Sips HCM, et al: Identification of mineralocorticoid receptor target genes in the mouse hippocampus. J Neuroendocrinol 31:e12735, 2019 32. Butler M, Vervoort BMT, van Ingen Schenau DS, et al: Reversal of IKZF1-induced glucocorticoid resistance by dual targeting of AKT and ERK signaling pathways. Front Oncol 12:905665, 2022 33. Bachmann PS, Piazza RG, Janes ME, et al: Epigenetic silencing of BIM in glucocorticoid poorresponsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 116:3013-22, 2010 34. Li Y, Buijs-Gladdines JG, Cante-Barrett K, et al: IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med 13:e1002200, 2016 35. Li B, Brady SW, Ma X, et al: Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood 135:41-55, 2020

RkJQdWJsaXNoZXIy MTk4NDMw