Mehmet Nizamoglu

157 3D lung models – 3D extracellular matrix models 96. Doyle AD. Generation of 3D Collagen Gels with Controlled Diverse Architectures. Curr Protoc Stem Cell Biol 2016: 72: 10 20 11-10 20 16. 97. Joannes A, Brayer S, Besnard V, MarchalSomme J, Jaillet M, Mordant P, Mal H, Borie R, Crestani B, Mailleux AA. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol 2016: 310(7): L615-629. 98. Bourke JE, Li X, Foster SR, Wee E, Dagher H, Ziogas J, Harris T, Bonacci JV, Stewart AG. Collagen remodelling by airway smooth muscle is resistant to steroids and beta(2)- agonists. Eur Respir J 2011: 37(1): 173-182. 99. Su K, Wang C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 2015: 37(11): 2139-2145. 100. Xiao S, Zhao T, Wang J, Wang C, Du J, Ying L, Lin J, Zhang C, Hu W, Wang L, Xu K. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Stem Cell Rev Rep 2019: 15(5): 664-679. 101. Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater 2019: 69(1): 1-20. 102. Xing Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 2014: 4(1): 4706. 103. Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J, Melchels FPW. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends Biotechnol 2016: 34(5): 394-407. 104. Melchels F, Blokland K, Ruijter MD, Malda J. A dual crosslinking strategy for reinforcing gelatine-methacrylamide hydrogels for tissue repair. In: 10th World Biomaterials Congress; 2016: Frontiers in Bioengineering and Biotechnology; 2016. 105. Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Eng Part B Rev 2020: 26(2): 164-180. 106. Jaipan P, Nguyen A, Narayan RJ. Gelatinbased hydrogels for biomedical applications. MRS Commun 2017: 7(3): 416-426. 107. Foox M, Zilberman M. Drug delivery from gelatin-based systems. Expert Opin Drug Deliv 2015: 12(9): 1547-1563. 108. Galliger Z, Vogt CD, Panoskaltsis-Mortari A. 3D bioprinting for lungs and hollow organs. Transl Res 2019: 211: 19-34. 109. Mondal A, Gebeyehu A, Miranda M, Bahadur D, Patel N, Ramakrishnan S, Rishi AK, Singh M. Characterization and printability of Sodium alginate -Gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep 2019: 9(1): 19914. 110. Wang X, Zhang X, Dai X, Wang X, Li X, Diao J, Xu T. Tumor-like lung cancer model based on 3D bioprinting. 3 Biotech 2018: 8(12): 501-501. 111. Ling T-Y, Liu Y-L, Huang Y-K, Gu S-Y, Chen H-K, Ho C-C, Tsao P-N, Tung Y-C, Chen H-W, Cheng C-H, Lin K-H, Lin F-H. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin – Microbubble scaffold. Biomaterials 2014: 35(22): 5660-5669. 6

RkJQdWJsaXNoZXIy MTk4NDMw