CHAPTER 10 230 10 90. Scherma M, Fadda P, Le Foll B, et al. The endocannabinoid system: a new molecular target for the treatment of tobacco addiction. CNS Neurol Disord Drug Targets. 2008;7(5):468-481. 91. Hirvonen J, Zanotti-Fregonara P, Gorelick DA, et al. Decreased Cannabinoid CB1 Receptors in Male Tobacco Smokers Examined With Positron Emission Tomography. Biol Psychiatry. 2018;84(10):715-721. 92. Gouveia-Figueira S, Goldin K, Hashemian SA, et al. Plasma levels of the endocannabinoid anandamide, related N-acylethanolamines and linoleic acid-derived oxylipins in patients with migraine. Prostaglandins Leukot Essent Fatty Acids. 2017;120:15-24. 93. Tilley SL, Coffman TM, Koller BH. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest. 2001;108(1):15-23. 94. Pradhan SS, Salinas K, Garduno AC, et al. Anti-Inflammatory and Neuroprotective Effects of PGE(2) EP4 Signaling in Models of Parkinson’s Disease. J Neuroimmune Pharmacol. 2017;12(2):292-304. 95. Liang X, Wang Q, Shi J, et al.The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann Neurol. 2008;64(3):304314. 96. Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat. 2010;91(34):104-112. 97. Yin F, Sancheti H, Patil I, Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med. 2016;100:108-122. 98. Albrecht DS, Mainero C, Ichijo E, et al. Imaging of neuroinflammation in migraine with aura: A [(11)C]PBR28 PET/MRI study. Neurology. 2019;92(17):e2038-e2050. 99. Wu D, Mura C, Beharka AA, et al. Ageassociated increase in PGE2 synthesis and COX activity in murine macrophages is reversed by vitamin E. Am J Physiol. 1998;275(3):C661-668. 100. Wu D, Meydani SN. Mechanism of ageassociated up-regulation in macrophage PGE2 synthesis. Brain Behav Immun. 2004;18(6):487494. 101. Hayek MG, Mura C, Wu D, et al. Enhanced expression of inducible cyclooxygenase with age in murine macrophages. J Immunol. 1997;159(5):2445-2451. 102. Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017;101(1):5-22. 103. Gusev A,Ko A,Shi H,et al.Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245-252. 104. Zhu Z, Zhang F, Hu H, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481-487. 105. O’Connor E, Fourier C, Ran C, et al. Genome-Wide Association Study Identifies Risk Loci for Cluster Headache. Ann Neurol. 2021;90(2):193-202. 106. Vollesen AL, Benemei S, Cortese F, et al. Migraine and cluster headache - the common link. J Headache Pain. 2018;19(1):89. 107. Chasman DI, Schürks M, Anttila V, et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet. 2011;43(7):695698. 108. Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48(8):856-866. 109. Winsvold BS, Nelson CP, Malik R, et al. Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurol Genet. 2015;1(1):e10. 110. Malik R, Freilinger T, Winsvold BS, et al. Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants. Neurology. 2015;84(21):2132-2145. 111. Diener H-C. CGRP antibodies for migraine prevention — new kids on the block. Nature Reviews Neurology. 2019;15(3):129-130.
RkJQdWJsaXNoZXIy MTk4NDMw