3 CHAPTER 3 72 References 1. Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263-269. 2. Wishart DS. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol Rev. 2019;99(4):1819-1875. 3. Monserrate AE, Ryman DC, Ma S, et al. Factors associated with the onset and persistence of post-lumbar puncture headache. JAMA Neurol. 2015;72(3):325-332. 4. van Oosterhout WP, van der Plas AA, van Zwet EW, et al. Postdural puncture headache in migraineurs and nonheadache subjects: a prospective study. Neurology. 2013;80(10):941948. 5. van Dongen RM, Onderwater GLJ, Pelzer N, et al. The effect of needle size on cerebrospinal fluid collection time and post-dural puncture headache: A retrospective cohort study. Headache. 2021;61(2):329-334. 6. De Kort AM, Kuiperij HB, Marques TM, et al. Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Ann Neurol. 2023; 93(6):1173-118 7. van Etten ES, Verbeek MM, van der Grond J, et al. β-Amyloid in CSF: Biomarker for preclinical cerebral amyloid angiopathy. Neurology. 2017;88(2):169-176. 8. Vervuurt M, de Kort AM, Jäkel L, et al. Decreased ratios of matrix metalloproteinases to tissue-type inhibitors in cerebrospinal fluid in sporadic and hereditary cerebral amyloid angiopathy. Alzheimers Res Ther. 2023;15(1):26. 9. Lajtha A, Galoyan A, Besedovsky H. Handbook of Neurochemistry and Molecular Neurobiology: Neuroimmunology. Springer; 2007. 10. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA. Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984;42(3):833-837. 11. Kruse T, Reiber H, Neuhoff V. Amino acid transport across the human blood-CSF barrier. An evaluation graph for amino acid concentrations in cerebrospinal fluid. J Neurol Sci. 1985;70(2):129-138. 12. Noga MJ, Dane A, Shi S, et al. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics. 2012;8(2):253-263. 13. Onderwater GLJ, van Dongen RM, Harms AC, et al. Cerebrospinal fluid and plasma amine profiles in interictal migraine. Ann Neurol. 2022; 93(4):715-728 14. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1211. 15. Noga MJ, Zielman R, van Dongen RM, et al. Strategies to assess and optimize stability of endogenous amines during cerebrospinal fluid sampling. Metabolomics. 2018;14(4):44. 16. van der Kloet FM, Bobeldijk I, Verheij ER, Jellema RH. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J Proteome Res. 2009;8(11):5132-5141. 17. Steiger JH. Tests for comparing elements of a correlation matrix. Psychol Bull. 1980;87(2):245251. 18. Zanatta A, Viegas CM, Tonin AM, et al. Disturbance of redox homeostasis by ornithine and homocitrulline in rat cerebellum: a possible mechanism of cerebellar dysfunction in HHH syndrome. Life Sci. 2013;93(4):161-168. 19. Viegas CM, Zanatta A, Knebel LA, et al. Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats. Brain Res. 2009;1291:102-12. 20. Khovarnagh N, Seyedalipour B. Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: The protective role of N-acetylcysteine and S-methylcysteine. Saudi Pharm J. 2021;29(3):280-289.
RkJQdWJsaXNoZXIy MTk4NDMw