Hanneke van der Wijngaart

154 CHAPTER 5 REFERENCES IN SUPPLEMENTARY DATA 1. Labots M, Pham TV, Honeywell RJ, et al: Kinase Inhibitor Treatment of Patients with Advanced Cancer Results in High Tumor Drug Concentrations and in Specific Alterations of the Tumor Phosphoproteome. Cancers (Basel) 12, 2020 2. Piersma SR, Knol JC, de Reus I, et al: Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines. J Proteomics 127:247-58, 2015 3. Sugiyama N, Masuda T, Shinoda K, et al: Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6:1103-9, 2007 4. van der Mijn JC, Labots M, Piersma SR, et al: Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics. Journal of Proteomics 127:259-263, 2015 5. Beekhof R, van Alphen C, Henneman AA, et al: INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases (vol 15, e8250, 2019). Molecular Systems Biology 15, 2019 6. Cox J, Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 26:1367-1372, 2008 7. Marx H, Lemeer S, Schliep JE, et al: A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics. Nature Biotechnology 31:557-+, 2013 8. Neerincx M, Sie DLS, van de Wiel MA, et al: MiR expression profiles of paired primary colorectal cancer and metastases by next-generation sequencing. Oncogenesis 4, 2015

RkJQdWJsaXNoZXIy MTk4NDMw