173 Discussion and future perspectives 43. Motzer RJ, Banchereau R, Hamidi H, et al. Molecular Subsets in Renal Cancer Determine Outcome to Checkpoint and Angiogenesis Blockade. Cancer Cell 2020;38(6):803-+. (In English). DOI: 10.1016/j. ccell.2020.10.011. 44. Vano YA, Elaidi R, Bennamoun M, et al. Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): a biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol 2022;23(5):612-624. (In English). DOI: 10.1016/S1470-2045(22)00128-0. 45. Hallal M, Braga-Lagache S, Jankovic J, et al. Inference of kinase-signaling networks in human myeloid cell line models by Phosphoproteomics using kinase activity enrichment analysis (KAEA). Bmc Cancer 2021;21(1) (In English). DOI: ARTN 789 10.1186/s12885-021-08479-z. 46. Li JJ, Wen SQ, Li B, Li N, Zhan XQ. Phosphorylation-Mediated Molecular Pathway Changes in Human Pituitary Neuroendocrine Tumors Identified by Quantitative Phosphoproteomics. Cells 2021;10(9) (In English). DOI: ARTN 2225 10.3390/cells10092225. 47. Khorsandi SE, Dokal AD, Rajeeve V, et al. Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets. Cancer Research 2021;81(22):57655776. (In English). DOI: 10.1158/0008-5472.Can-21-0955. 48. Xu RF, Chen Y, Wang ZJ, et al. Phosphoproteomics Identifies Significant Biomarkers Associated with the Proliferation and Metastasis of Prostate Cancer. Toxins 2021;13(8) (In English). DOI: ARTN 554 10.3390/toxins13080554. 49. Hirano H, Abe Y, Nojima Y, et al. Temporal dynamics from phosphoproteomics using endoscopic biopsy specimens provides new therapeutic targets in stage IV gastric cancer. Sci Rep-Uk 2022;12(1) (In English). DOI: ARTN 4419 10.1038/s41598-022-08430-7. 50. van Linde ME, Labots M, Brahm CG, et al. Tumor Drug Concentration and Phosphoproteomic Profiles After Two Weeks of Treatment With Sunitinib in Patients with Newly Diagnosed Glioblastoma. Clinical Cancer Research 2022;28(8):1595-1602. (In English). DOI: 10.1158/1078-0432.Ccr-21-1933. 51. Labots M, Pham TV, Honeywell RJ, et al. Kinase Inhibitor Treatment of Patients with Advanced Cancer Results in High Tumor Drug Concentrations and in Specific Alterations of the Tumor Phosphoproteome. Cancers (Basel) 2020;12(2). DOI: 10.3390/cancers12020330. 52. Labots M, van der Mijn JC, Beekhof R, et al. Phosphotyrosine-based-phosphoproteomics scaleddown to biopsy level for analysis of individual tumor biology and treatment selection. J Proteomics 2017;162:99-107. DOI: 10.1016/j.jprot.2017.04.014. 53. Lai HW, Wu HK, Kuo SJ, et al. Differences in accuracy and underestimation rates for 14- versus 16gauge core needle biopsies in ultrasound-detectable breast lesions. Asian J Surg 2013;36(2):83-88. (In English). DOI: 10.1016/j.asjsur.2012.09.003. 54. Bray SE, Paulin FE, Fong SC, et al. Gene expression in colorectal neoplasia: modifications induced by tissue ischaemic time and tissue handling protocol. Histopathology 2010;56(2):240-50. DOI: 10.1111/j.1365-2559.2009.03470.x. 55. Buffart TE, van den Oord RAHM, van den Berg A, et al. Time dependent effect of cold ischemia on the phosphoproteome and protein kinase activity in fresh-frozen colorectal cancer tissue obtained from patients. Clin Proteom 2021;18(1) (In English). DOI: ARTN 8 10.1186/s12014-020-09306-6. 6
RkJQdWJsaXNoZXIy MTk4NDMw