139 Etiology in Lesion-Symptom Mapping: Tumor vs. Stroke 21. Taphoorn MJB, Klein M. Cognitive deficits in adult patients with brain tumours. Lancet Neurology 2004; 3: 159–168. 22. Arbula S, Ambrosini E, Della Puppa A, et al. Focal left prefrontal lesions and cognitive impairment: A multivariate lesion-symptom mapping approach. Neuropsychologia 2020; 136: 107253. 23. De Witt Hamer PC, Hendriks EJ, Mandonnet E, et al. Resection Probability Maps for Quality Assessment of Glioma Surgery without Brain Location Bias. PLoS One 2013; 8: e73353. 24. Habets EJJ, Hendriks EJ, Taphoorn MJB, et al. Association between tumor location and neurocognitive functioning using tumor localization maps. J Neurooncol 2019; 144: 573–582. 25. Hendriks EJ, Habets EJJ, Taphoorn MJB, et al. Linking late cognitive outcome with glioma surgery location using resection cavity maps. Hum Brain Mapp 2018; 39: 2064–2074. 26. Fekonja LS, Wang Z, Doppelbauer L, et al. Lesion-symptom mapping of language impairments in patients suffering from left perisylvian gliomas. Cortex 2021; 144: 1–14. 27. Herbet G, Duffau H. Contribution of the medial eye field network to the voluntary deployment of visuospatial attention. Nat Commun; 13. Epub ahead of print 2022. DOI: 10.1038/s41467-022-28030-3. 28. van Kessel E, Berendsen S, Baumfalk AE, et al. Tumor-related molecular determinants of neurocognitive deficits in patients with diffuse glioma. Neuro Oncol. 29. Lugtmeijer S, Geerligs L, de Leeuw FE, et al. Are visual working memory and episodic memory distinct processes? Insight from stroke patients by lesionsymptom mapping. Brain Struct Funct 2021; 226: 1713–1726. 30. Lammers NA, Berg NS Van Den, Id SL, et al. Mid-range visual deficits after stroke : Prevalence and co-occurrence. PLoS One 2022; 17: e0262886. 31. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 2013; 310: 2191–2194. 32. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131: 803–820. 33. Neumann AB, Jonsdottir KY, Mouridsen K, et al. Interrater agreement for final infarct mri lesion delineation. Stroke 2009; 40: 3768–3771. 34. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006; 31: 1116–1128. 35. Crinion J, Ashburner J, Leff A, et al. Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses. Neuroimage 2007; 37: 866–875. 36. Rorden C, Bonilha L, Fridriksson J, et al. Age-specific CT and MRI templates for spatial normalization. Neuroimage 2012; 61: 957–965. 37. Nachev P, Coulthard E, Jäger HR, et al. Enantiomorphic normalization of focally lesioned brains. Neuroimage 2008; 39: 1215–1226. 38. Brett M, Leff AP, Rorden C, et al. Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 2001; 14: 486–500. 39. Zhang Y, Kimberg DY, Coslett HB, et al. Multivariate lesion‐symptom mapping using support vector regression. Hum Brain Mapp 2014; 35: 5861–5876. 5
RkJQdWJsaXNoZXIy MTk4NDMw