Eva van Grinsven

141 Etiology in Lesion-Symptom Mapping: Tumor vs. Stroke 59. Carrera E, Tononi G. Diaschisis: Past, present, future. Brain 2014; 137: 2408– 2422. 60. Siegel JS, Shulman GL, Corbetta M. Mapping correlated neurological deficits after stroke to distributed brain networks. Brain Struct Funct 2022; 227: 3173– 3187. 61. Silvestri E, Moretto M, Facchini S, et al. Widespread cortical functional disconnection in gliomas: an individual network mapping approach. Brain Commun 2022; 4: 1–14. 62. Anderson SW, Damasio H, Tranel D. Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol 1990; 47: 397–405. 63. Shallice T, Mussoni A, D’Agostino S, et al. Right posterior cortical functions in a tumour patient series. Cortex 2010; 46: 1178–1188. 64. Manuel AL, Radman N, Mesot D, et al. Inter- and intrahemispheric dissociations in ideomotor apraxia: a large-scale lesion-symptom mapping study in subacute brain-damaged patients. Cereb Cortex 2013; 23: 2781–9. 65. Sperber C. Rethinking causality and data complexity in brain lesion-behaviour inference and its implications for lesion-behaviour modelling. Cortex 2020; 126: 49–62. 66. Lorca-Puls DL, Gajardo-Vidal A, White J, et al. The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings. Neuropsychologia 2018; 115: 101–111. 67. van Kessel E, Snijders TJ, Baumfalk AE, et al. Neurocognitive changes after awake surgery in glioma patients: a retrospective cohort study. J Neurooncol 2020; 146: 97–109. 68. Sperber C, Karnath HO. Impact of correction factors in human brain lesionbehavior inference. Hum Brain Mapp 2017; 38: 1692–1701. 69. de Haan B, Karnath HO. A hitchhiker’s guide to lesion-behaviour mapping. Neuropsychologia 2018; 115: 5–16. 70. Sperber C, Wiesen D, Karnath HO. An empirical evaluation of multivariate lesion behaviour mapping using support vector regression. Hum Brain Mapp 2018; 40: 1381–1390. 71. Ramsey LE, Siegel JS, Lang CE, et al. Behavioural clusters and predictors of performance during recovery from stroke. Nat Hum Behav 2017; 1: 1–10. 72. Corbetta M, Siegel JS, Shulman GL. On the low dimensionality of behavioral deficits and alterations of brain network connectivity after focal injury. Cortex, 2018. Epub ahead of print 2018. DOI: 10.1016/j.cortex.2017.12.017. 73. Salvalaggio A, de Filippo De Grazia M, Zorzi M, et al. Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain 2020; 143: 2173–2188. 74. Weaver NA, Kuijf HJ, Aben HP, et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol 2021; 20: 448–459. 75. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021; 23: 1231–1251. 76. Karnath HO, Rennig J. Investigating structure and function in the healthy human brain: validity of acute versus chronic lesion-symptom mapping. Brain Struct Funct 2017; 222: 2059–2070. 77. de Haan B, Karnath HO. ‘Whose atlas I use, his song I sing?’ – The impact of anatomical atlases on fiber tract contributions to cognitive deficits after stroke. Neuroimage 2017; 163: 301–309. 5

RkJQdWJsaXNoZXIy MTk4NDMw