Eva van Grinsven

167 Hemodynamic Imaging in Brain Metastases: ASL vs. Hypercapnic BOLD 37. Bhogal AA, De Vis JB, Siero JCW, et al. The BOLD cerebrovascular reactivity response to progressive hypercapnia in young and elderly. Neuroimage 2016; 139: 94–102. 38. Lassen U, Andersen P, Daugaard G, et al. Brain metastases from small cell lung cancer respond to chemotherapy, but response duration is short and the intracerebral concentration of chemotherapy may be too low because of the characteristics of the blood-brain barrier. Positron emission tomography. Clinical Cancer Research 1998; 4: 2591–2597. 39. Quattrocchi CC, Errante Y, Mallio CA, et al. Brain metastatic volume and white matter lesions in advanced cancer patients. J Neurooncol 2013; 113: 451–458. 40. Berk BA, Nagel S, Hering K, et al. White matter lesions reduce number of brain metastases in different cancers: a high-resolution MRI study. J Neurooncol 2016; 130: 203–209. 41. Yamaguchi T, Kanno I, Uemura K, et al. Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 1986; 17: 1220–1228. 42. Leoni RF, Oliveira IAF, Pontes-Neto OM, et al. Cerebral blood flow and vasoreactivity in aging: An arterial spin labeling study. Brazilian Journal of Medical and Biological Research 2017; 50: 1–9. 43. Mandell DM, Han JS, Poublanc J, et al. Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: Comparison with arterial spin labeling MRI. Stroke 2008; 39: 2021–2028. 44. Lu H, Xu F, Rodrigue KM, et al. Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cerebral Cortex 2011; 21: 1426–1434. 45. Marstrand JR, Garde E, Rostrup E, et al. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 2002; 33: 972– 976. 46. Cohen J. The effect size. Statistical power analysis for the behavioral sciences 1988; 77–83. 47. Derdeyn CP, Videen TO, Yundt KD, et al. Variability of cerebral blood volume and oxygen extraction: Stages of cerebral haemodynamic impairment revisited. Brain 2002; 125: 595–607. 48. Kuroda S, Kamiyama H, Abe H, et al. Acetazolamide test in detecting reduced cerebral perfusion reserve and predicting long-term prognosis in patients with internal carotid artery occlusion. Neurosurgery 1993; 32: 912–919. 49. Lou X, Yu S, Scalzo F, et al. Multi-delay ASL can identify leptomeningeal collateral perfusion in endovascular therapy of ischemic stroke. Oncotarget 2017; 8: 2437– 2443. 50. Wang DJJ, Alger JR, Qiao JX, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: Comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 2012; 43: 1018–1024. 51. Alsop DC, Detre JA, Golay X, et al. Recommended Implementation of Arterial Spin Labeled Perfusion MRI for Clinical Applications: A consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia. Magn Reson Med 2015; 73: 102–116. 52. Fan AP, Guo J, Khalighi MM, et al. Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients: A Simultaneous Positron Emission Tomography/MRI Study. Stroke 2017; 48: 2441–2449. 6

RkJQdWJsaXNoZXIy MTk4NDMw