Eva van Grinsven

198 Chapter 7 52. Hatazawa J, Fujita H, Kanno I, et al. Regional cerebral blood flow, blood volume, oxygen extraction fraction, and oxygen utilization rate in normal volunteers measured by the autoradiographic technique and the single breath inhalation method. Ann Nucl Med 1995; 9: 15–21. 53. Sebök M, van Niftrik CHB, Muscas G, et al. Hypermetabolism and impaired cerebrovascular reactivity beyond the standard MRI-identified tumor border indicate diffuse glioma extended tissue infiltration. Neurooncol Adv 2021; 3: 1–9. 54. Quattrocchi CC, Errante Y, Mallio CA, et al. Brain metastatic volume and white matter lesions in advanced cancer patients. J Neurooncol 2013; 113: 451–458. 55. Berk BA, Nagel S, Hering K, et al. White matter lesions reduce number of brain metastases in different cancers: a high-resolution MRI study. J Neurooncol 2016; 130: 203–209. 56. Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: The influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol 2016; 18: 160–172. 57. Tang PLY, Méndez Romero A, Jaspers JPM, et al. The potential of advanced MR techniques for precision radiotherapy of glioblastoma. Magnetic Resonance Materials in Physics, Biology and Medicine 2022; 35: 127–143. 58. Feitelson MA, Arzumanyan A, Kulathinal RJ, et al. Sustained proliferation in cancer: therapeutic targets. Seminars Cancer Biology 2016; 35: 25–54. 59. Mehnati P, Baradaran B, Vahidian F, et al. Functional response difference between diabetic/normal cancerous patients to inflammatory cytokines and oxidative stresses after radiotherapy. Reports of Practical Oncology and Radiotherapy 2020; 25: 730–737. 60. Siva S, MacManus MP, Martin RF, et al. Abscopal effects of radiation therapy: A clinical review for the radiobiologist. Cancer Lett 2015; 356: 82–90. 61. Fan AP, Evans KC, Stout JN, et al. Regional quantification of cerebral venous oxygenation from MRI susceptibility during hypercapnia. Neuroimage 2015; 104: 146–155. 62. Alsop DC, Detre JA, Golay X, et al. Recommended Implementation of Arterial Spin Labeled Perfusion MRI for Clinical Applications: A consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia. Magn Reson Med 2015; 73: 102–116. 63. Fan AP, Guo J, Khalighi MM, et al. Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients: A Simultaneous Positron Emission Tomography/MRI Study. Stroke 2017; 48: 2441–2449. 64. Detre JA, Rao H, Wang DJJ, et al. Applications of arterial spin labeled MRI in the brain. Journal of Magnetic Resonance Imaging 2012; 35: 1026–1037. 65. Cho J, Ma Y, Spincemaille P, et al. Cerebral oxygen extraction fraction (OEF): comparison of dual- gas challenge calibrated BOLD with CBF and challenge-free gradient echo QSM+qBOLD. Magn Reson Med 2021; 85: 953–961. 66. Cho J, Nguyen TD, Huang W, et al. Brain oxygen extraction fraction mapping in patients with multiple sclerosis. Journal of Cerebral Blood Flow and Metabolism 2022; 42: 338–348. 67. Zhang S, Cho J, Nguyen TD, et al. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison With Perfusion and Diffusion Mapping. Front Neurosci 2020; 14: 1–11.

RkJQdWJsaXNoZXIy MTk4NDMw