53 Cognitive Impact of SRS vs. WBRT: Systematic Review & Meta-analysis 48. Gotwals P, Cameron S, Cipolletta D, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 2017; 17: 286–301. 49. Sperduto PW, Mesko S, Li J, et al. Survival in Patients With Brain Metastases : Summary Report on the Updated Diagnosis-Speci fi c Graded Prognostic Assessment and De fi nition of the Eligibility Quotient. Journal of Clinical Oncology 2020; 38: 1–13. 50. Roth P, Preusser M, Weller M. Immunotherapy of Brain Cancer. Oncol Res Treat 2016; 39: 326–334. 51. Makale MT, McDonald CR, Hattangadi-Gluth JA, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 2017; 13: 52–64. 52. Le Rhun E, Dhermain F, Vogin G, et al. Radionecrosis after stereotactic radiotherapy for brain metastases. Expert Rev Neurother 2016; 16: 903–914. 53. Monje ML, Mizumatsu S, Fike JR, et al. Irradiation induces neural precursor-cell dysfunction. Nat Med 2002; 8: 955–962. 54. Raber J, Rola R, LeFevour A, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 2004; 162: 39–47. 55. Braun U, Schafer A, Walter H, et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences 2015; 112: 11678–11683. 56. Duering M, Gonik M, Malik R, et al. Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. Neuroimage 2013; 66: 177–183. 57. Bressler SL, Kelso JA. Cortical coordination dynamics and cognition. Trends Cogn Sci 2001; 5: 26–36. 58. Connor M, Karunamuni R, McDonald C, et al. Regional susceptibility to dosedependent white matter damage after brain radiotherapy. Radiotherapy and Oncology 2017; 123: 209–217. 59. Lin J, Lv X, Niu M, et al. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. Neuroimage Clin 2017; 14: 610–621. 60. Nagtegaal SHJ, David S, van der Boog ATJ, et al. Changes in cortical thickness and volume after cranial radiation treatment: A systematic review. Radiotherapy and Oncology 2019; 135: 33–42. 61. Seibert TM, Karunamuni R, Kaifi S, et al. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy. In: International Journal of Radiation Oncology Biology Physics. 2017, pp. 910–918. 62. Simó M, Vaquero L, Ripollés P, et al. Longitudinal brain changes associated with prophylactic cranial irradiation in lung cancer. Journal of Thoracic Oncology 2016; 11: 475–486. 63. Nagtegaal SHJ, David S, Snijders TJ, et al. Effect of radiation therapy on cerebral cortical thickness in glioma patients: Treatment-induced thinning of the healthy cortex. Neuro-Oncology Advances; 2. Epub ahead of print 2020. DOI: 10.1093/ noajnl/vdaa060. 64. Nagtegaal SHJ, David S, Philippens MEP, et al. Dose-dependent volume loss in subcortical deep grey matter structures after cranial radiotherapy. Clin Transl Radiat Oncol 2021; 26: 35–41. 2
RkJQdWJsaXNoZXIy MTk4NDMw