Eva van Grinsven

99 Individual Cognitive Trajectories Post-Radiotherapy for Brain Metastases 29. John Hugh Court, Raven J. Manual for Raven’s Progressive Matrices and Vocabulary Scales. Section 7, Research and References: Summaries of Published Normative Studies, Reliability Studies, Validity Studies, References to All Sections of the Manual. Oxford Psychologists. Published online 1995. 30. Verhage F. Intelligentie en leeftijd bij volwassenen en bejaarden. Koninklijke van Gorcum. Published online 1964. 31. Green HJ, Pakenham KI, Gardiner RA. Cognitive deficits associated with cancer: A model of subjective and objective outcomes. Psychol Health Med. 2005;10(2):145160. doi:10.1080/13548500500093308 32. Popp I, Rau A, Kellner E, et al. Hippocampus-Avoidance Whole-Brain Radiation Therapy Is Efficient in the Long-Term Preservation of Hippocampal Volume. Front Oncol. 2021;11(August):1-11. doi:10.3389/fonc.2021.714709 33. Yang WC, Chen YF, Yang CC, et al. Hippocampal avoidance whole-brain radiotherapy without memantine in preserving neurocognitive function for brain metastases: a phase II blinded randomized trial. Neuro Oncol. 2020;(August):1-9. doi:10.1093/neuonc/noaa193 34. Wefel JS, Armstrong TS, Tome WA, et al. Sustained Preservation of Cognition and Prevention of Patient-Reported Symptoms with Hippocampal Avoidance during Whole-Brain Radiotherapy for Brain Metastases: Final Results of NRG Oncology CC001. Int J Radiat Oncol Biol Phys. Published online 2023. doi:10.1016/j. ijrobp.2023.04.030 35. Burgess L, Nair V, Gratton J, Doody J, Chang L, Malone S. Stereotactic radiosurgery optimization with hippocampal-sparing in patients treated for brain metastases. Phys Imaging Radiat Oncol. 2021;17:106-110. doi:10.1016/j. phro.2021.02.001 36. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol. 2017;13(1):52-64. doi:10.1038/nrneurol.2016.185 37. Nagtegaal SHJ, David S, Philippens MEP, Snijders TJ, Leemans A, Verhoeff JJC. Dose-dependent volume loss in subcortical deep grey matter structures after cranial radiotherapy. Clin Transl Radiat Oncol. 2021;26:35-41. doi:10.1016/j. ctro.2020.11.005 38. Nagtegaal SHJ, David S, Snijders TJ, Philippens MEP, Leemans A, Verhoeff JJC. Effect of radiation therapy on cerebral cortical thickness in glioma patients: Treatment-induced thinning of the healthy cortex. Neurooncol Adv. 2020;2(1). doi:10.1093/noajnl/vdaa060 39. Nagtegaal SHJ, David S, van Grinsven EE, et al. Morphological changes after cranial fractionated photon radiotherapy: Localized loss of white matter and grey matter volume with increasing dose. Clin Transl Radiat Oncol. 2021;31(January):14-20. doi:10.1016/j.ctro.2021.08.010 40. Connor M, Karunamuni R, McDonald C, et al. Regional susceptibility to dosedependent white matter damage after brain radiotherapy. Radiotherapy and Oncology. 2017;123(2):209-217. doi:10.1016/j.radonc.2017.04.006 41. Zhu T, Chapman CH, Tsien C, et al. Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging. Int J Radiat Oncol Biol Phys. 2016;96(3):696-705. doi:10.1016/j.ijrobp.2016.07.010 42. Chapman CH, Zhu T, Nazem-Zadeh M, et al. Diffusion tensor imaging predicts cognitive function change following partial brain radiotherapy for low-grade and benign tumors. Radiotherapy and Oncology. 2016;120(2):234-240. doi:10.1016/j. radonc.2016.06.021 4

RkJQdWJsaXNoZXIy MTk4NDMw