Sobhan Neyrizi

 IV- Microkinetic modeling The microkinetic model we developed assumes that a particular step in the reaction mechanism is rate-determining, and that all other reaction steps are in equilibrium. We also account for the presence of water as an oxygen acceptor and proton donor in the second step of the reaction. It is important to note that if we were to assume CO2 to be the oxygen acceptor instead of water, we would expect to obtain the same overall reaction rate results. By incorporating these assumptions into our model, we can predict how the presence of imidazolium cation as a promoter affects the rate of the first electron transfer step, and ultimately the overall rate of the reaction. The series of reaction steps for the formation of CO can be described as follows:                     Assuming that step [5.3] is rate-determining and that steps 5.2 and 5.1 are in equilibrium, we can write:                                           Combining equations [5.3] and [5.7], we obtain the following expression for the rate of CO desorption:       

RkJQdWJsaXNoZXIy MTk4NDMw