Renée Maas

143 Metabolic maturation increases susceptibility to hypoxia-induced damage in human iPSC-derived cardiomyocytes 6 REFERENCES 1. Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association.; 2020. doi:10.1161/CIR.0000000000000757 2. Oerlemans MIFJ, Koudstaal S, Chamuleau SA, De Kleijn DP, Doevendans PA, Sluijter JPG. Targeting cell death in the reperfused heart: Pharmacological approaches for cardioprotection. Int J Cardiol. 2013;165(3):410-422. doi:10.1016/j.ijcard.2012.03.055 3. Hausenloy DJ, Garcia-Dorado D, Bøtker HE, et al. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2017;113(6):564-585. doi:10.1093/cvr/cvx049 4. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of Risk Factors, Comorbidities, and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Preconditioning, Postconditioning, and Remote Conditioning. Pharmacol Rev. 2014;66(4):1142-1174. 5. Milani-Nejad N, Janssen PML. Small and Large Animal Models in Cardiac Contraction Research: Advantages and Disadvantages. Pharmacol Ther. 2014;141(3):1-5. doi:10.1016/j.pharmthera.2013.10.007.Small 6. Pond AL, Scheve BK, Benedict AT, et al. Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. J Biol Chem. 2000;275(8):5997-6006. doi:10.1074/jbc.275.8.5997 7. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev. 1986;66(3):710-771. doi:10.1152/physrev.1986.66.3.710 8. Marian AJ. On mice, rabbits and human heart failure. Circulation. 2005;111(18):2276-2279. doi:10.1161/01. CIR.0000167559.13502.9A.On 9. Uosaki H, Taguchi Y h. Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation. Genomics, Proteomics Bioinforma. 2016;14(4):207-215. doi:10.1016/j.gpb.2016.04.004 10. Karakikes I, Ameen M, Termglinchan V, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Insights into Molecular, Cellular, and Functional Phenotypes. Circ Res. 2015;117(1):80-88. doi:10.1161/ CIRCRESAHA.117.305365 11. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131(5):861-872. doi:10.1016/j.cell.2007.11.019 12. Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10(1):16-28. doi:10.1016/j.stem.2011.12.013 13. van Mil A, Balk GM, Neef K, et al. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: Progress, pitfalls, and potential. Cardiovasc Res. 2018;114(14):1828-1842. doi:10.1093/ cvr/cvy208 14. Li Q, Wang J, Wu Q, Cao N, Yang HT. Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair. Stem Cells Transl Med. 2020;9(10):1121-1128. doi:10.1002/sctm.19-0340 15. Hnatiuk AP, Briganti F, Staudt DW, Mercola M. Human iPSC modeling of heart disease for drug development. Cell Chem Biol. 2021;28(3):271-282. doi:10.1016/j.chembiol.2021.02.016 16. Robertson C, Tran DD, George SC. Concise review: Maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2013;31(5):829-837. doi:10.1002/stem.1331 17. Herron TJ. Calcium and voltage mapping in hiPSC-CM monolayers. Cell Calcium. 2016;59(2-3):84-90. doi:10.1016/j. ceca.2016.02.004 18. Feyen DAM, McKeithan WL, Bruyneel AAN, et al. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Rep. 2020;32(3). doi:10.1016/j.celrep.2020.107925 19. Ulmer BM, Eschenhagen T. Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism. Biochim Biophys Acta - Mol Cell Res. 2020;1867(3):118471. doi:10.1016/j.bbamcr.2019.04.001 20. Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013;12(1):127-137. doi:10.1016/j.stem.2012.09.013 21. Fillmore N, Levasseur JL, Fukushima A, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. 2018:1-12.

RkJQdWJsaXNoZXIy MTk4NDMw