144 Chapter 6 22. Ulmer BM, Stoehr A, Schulze ML, et al. Contractile Work Contributes to Maturation of Energy Metabolism in hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2018;10(3):834-847. doi:10.1016/j.stemcr.2018.01.039 23. Horikoshi Y, Yan Y, Terashvili M, et al. Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cells. 2019;8(1095):1-21. 24. Hu D, Linders A, Yamak A, et al. Metabolic maturation of human pluripotent stem cellderived cardiomyocytes by inhibition of HIF1α and LDHA. Circ Res. 2018;123(9):1066-1079. doi:10.1161/CIRCRESAHA.118.313249 25. Hidalgo A, Glass N, Ovchinnikov D, et al. Modelling ischemia-reperfusion injury (IRI) in vitro using metabolically matured induced pluripotent stem cell-derived cardiomyocytes. APL Bioeng. 2018;2(2). doi:10.1063/1.5000746 26. Kitani T, Ong SG, Lam CK, et al. Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients with Breast Cancer. Circulation. 2019;139(21):2451-2465. doi:10.1161/ CIRCULATIONAHA.118.037357 27. Matsa E, Burridge PW, Yu KH, et al. Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell Stem Cell. 2016;19(3):311-325. doi:10.1016/j. stem.2016.07.006 28. Hamad S, Derichsweiler D, Papadopoulos S, et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics. 2019;9(24):7222-7238. doi:10.7150/thno.32058 29. Schneider CA, Rasband WS, Eliceiri KW. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. doi:10.3389/fimmu.2021.731361 30. Ye L, Qiu L, Zhang H, et al. Cardiomyocytes in Young Infants with Congenital Heart Disease: A Three-Month Window of Proliferation. Sci Rep. 2016;6:1-9. doi:10.1038/srep23188 31. Kretzschmar K, Post Y, Bannier-Hélaouët M, et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci U S A. 2018;115(52):E12245-E12254. doi:10.1073/pnas.1805829115 32. Balafkan N, Mostafavi S, Schubert M, et al. A method for differentiating human induced pluripotent stem cells toward functional cardiomyocytes in 96-well microplates. Sci Rep. 2020;10(1):1-14. doi:10.1038/s41598-020-73656-2 33. Carreau A, Hafny-Rahbi B El, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239-1253. doi:10.1111/j.15824934.2011.01258.x 34. Oerlemans MIFJ, Liu J, Arslan F. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia – reperfusion in vivo. 2012. doi:10.1007/s00395-012-0270-8 35. Feyen D, Gaetani R, Liu J, et al. Increasing short-term cardiomyocyte progenitor cell ( CMPC ) survival by necrostatin-1 did not further preserve cardiac function. 2018:83-91. doi:10.1093/cvr/cvt078 36. Häkli M, Kreutzer J, Mäki AJ, et al. Human induced pluripotent stem cell-based platform for modeling cardiac ischemia. Sci Rep. 2021;11(1):1-13. doi:10.1038/s41598-021-83740-w 37. J. Patterson A, Zhang L. Hypoxia and Fetal Heart Development. Curr Mol Med. 2010;10(7):653-666. doi:10.2174/156652410792630643 38. Ascuitto RJ, Ross-Ascuitto NT. Substrate metabolism in the developing heart. Semin Perinatol. 1996;20(6):542-563. doi:10.1016/S0146-0005(96)80068-1 39. Menendez-Montes I, Escobar B, Palacios B, et al. Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation. Dev Cell. 2016;39(6):724-739. doi:10.1016/j.devcel.2016.11.012 40. Slaats RH, Schwach V, Passier R. Metabolic environment in vivo as a blueprint for differentiation and maturation of human stem cell-derived cardiomyocytes. Biochim Biophys Acta - Mol Basis Dis. 2020;1866(10):165881. doi:10.1016/j.bbadis.2020.165881 41. Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56(2):130-140. doi:10.1097/FJC.0b013e3181e74a14 42. Ferrari R, Ceconi C, Curello S, et al. Role of oxygen free radicals in ischemic and reperfused myocardium. Am J Clin Nutr. 1991;53. doi:10.1093/ajcn/53.1.215S 43. Wei W, Liu Y, Zhang Q, Wang Y, Zhang X, Zhang H. Danshen-Enhanced Cardioprotective Effect of Cardioplegia on Ischemia Reperfusion Injury in a Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Model. Artif Organs. 2017;41(5):452-460. doi:10.1111/aor.12801
RkJQdWJsaXNoZXIy MTk4NDMw