Renée Maas

22 Chapter 1 24. Olson, E. N. & Srivastava, D. Molecular Pathways Controlling Heart Development. Science vol. 272 671–676 Preprint at https://doi.org/10.1126/science.272.5262.671 (1996). 25. Solloway, M. J. & Harvey, R. P. Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc. Res. 58, 264–277 (2003). 26. Ueno, S. et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 104, 9685–9690 (2007). 27. Thomson, J. A. et al. Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. U. S. A. 92, (1995). 28. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, (2006). 29. Carvajal-Vergara, X. et al. Patient-specific induced pluripotent stem cell derived models of LEOPARD syndrome. Nature 465, 808 (2010). 30. Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/βcatenin signaling under fully defined conditions. Nat. Protoc. 8, (2013). 31. Burridge, P. W., Holmström, A. & Wu, J. C. Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. Curr. Protoc. Hum. Genet. 87, 21.3.1 (2015). 32. Musunuru, K. et al. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circ Genom Precis Med 11, e000043 (2018). 33. Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H. & Keller, G. M. Human Pluripotent Stem Cell-Derived Atrial and Ventricular Cardiomyocytes Develop from Distinct Mesoderm Populations. Cell Stem Cell 21, 179–194.e4 (2017). 34. Batalov, I. & Feinberg, A. W. Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture. Biomarker Insights vol. 10s1 BMI.S20050 Preprint at https://doi.org/10.4137/bmi.s20050 (2015). 35. Pahnke, A. et al. The role of Wnt regulation in heart development, cardiac repair and disease: a tissue engineering perspective. Biochem. Biophys. Res. Commun. 473, 698 (2016). 36. Mills, R. J. et al. Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway. Cell Stem Cell 24, 895–907.e6 (2019). 37. Sharma, A. et al. Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Sci. Rep. 8, 6618 (2018). 38. Titmarsh, D. M. et al. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci. Rep. 6, (2016). 39. Uosaki, H. et al. Identification of chemicals inducing cardiomyocyte proliferation in developmental stagespecific manner with pluripotent stem cells. Circ. Cardiovasc. Genet. 6, (2013). 40. Buikema, J. W. et al. Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell 27, 50–63.e5 (2020). 41. Maas, R. G. C. et al. Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protoc 2, 100334 (2021). 42. Mummery, C. L. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, (2012). 43. Denning, C. et al. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochim. Biophys. Acta 1863, 1728–1748 (2016). 44. Knight, W. E. et al. Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Enables Modeling of Human Hypertrophic Cardiomyopathy. Stem Cell Reports 16, 519–533 (2021). 45. Karakikes, I., Ameen, M., Termglinchan, V. & Wu, J. C. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Insights into Molecular, Cellular, and Functional Phenotypes. Circ. Res. 117, 80 (2015). 46. Ahmed, R. E., Anzai, T., Chanthra, N. & Uosaki, H. A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Front Cell Dev Biol 8, 178 (2020). 47. Tu, C., Chao, B. S. & Wu, J. C. Strategies for Improving the Maturity of Human Induced Pluripotent Stem CellDerived Cardiomyocytes. Circ. Res. 123, 512–514 (2018). 48. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273 (2019).

RkJQdWJsaXNoZXIy MTk4NDMw