332 Chapter 12 75. Wang, N., Cao, Y. & Zhu, Y. Netrin-1 prevents the development of cardiac hypertrophy and heart failure. Mol. Med. Rep. 13, 2175–2181 (2016). 76. Du, J. et al. TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ. Res. 106, 992– 1003 (2010). 77. Adapala, R. K. et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J. Mol. Cell. Cardiol. 54, 45–52 (2013). 78. Ji, C. & McCulloch, C. A. TRPV4 integrates matrix mechanosensing with Ca2+ signaling to regulate extracellular matrix remodeling. FEBS J. 288, 5867–5887 (2021). 79. Korpela, H. et al. Gene therapy for ischaemic heart disease and heart failure. J. Intern. Med. 290, 567–582 (2021). 80. Ramamurthy, R. M., Atala, A., Porada, C. D. & Almeida-Porada, G. Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies. Front. Immunol. 13, 1011143 (2022). 81. Surià Albà, R. American Society of Gene and Cell Therapy (ASGCT) - 25th Annual Meeting. Washington, D.C./ Virtual - May 16-19, 2022. Drugs Future (2022) doi:10.1358/dof.2022.47.8.3455366. 82. Kranias, E. G. & Hajjar, R. J. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ. Res. 110, 1646–1660 (2012). 83. Herum, K. M. et al. Cardiac fibroblast sub-types reflect pathological cardiac remodeling. Matrix Biol Plus 15, 100113 (2022). 84. Moretti, A. et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat. Med. 26, 207–214 (2020). 85. Prondzynski, M. et al. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. Mol. Ther. Nucleic Acids 7, 475–486 (2017). 86. Lyon, A. R. et al. Investigation of the safety and feasibility of AAV1/SERCA2a gene transfer in patients with chronic heart failure supported with a left ventricular assist device - the SERCA-LVAD TRIAL. Gene Ther. 27, (2020).
RkJQdWJsaXNoZXIy MTk4NDMw