Renée Maas

375 General Discussion - hiPSC-CMs Disease Modelling and Future Perspectives 13 REFERENCES 1. McKenna, W. J. & Judge, D. P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 18, 22–36 (2020). 2. He, J. et al. Arrhythmogenic Left Ventricular Cardiomyopathy: A Clinical and CMR Study. Sci. Rep. 10, 1–12 (2020). 3. Becker, C. & Hesse, M. Role of Mononuclear Cardiomyocytes in Cardiac Turnover and Regeneration. Curr. Cardiol. Rep. 22, (2020). 4. Macmahon, H. E. Hyperplasia and Regeneration of the Myocardium in Infants and in Children. Am. J. Pathol. 13, 845–854.5 (1937). 5. Haubner, B. J. et al. Functional Recovery of a Human Neonatal Heart After Severe Myocardial Infarction. Circ. Res. 118, 216–221 (2016). 6. Johnson, J., Mohsin, S. & Houser, S. R. Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart. Int. J. Mol. Sci. 22, (2021). 7. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 26, 309–329 (2020). 8. Kamakura, T. et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, (2013). 9. Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, (2013). 10. Ebert, A. et al. Proteasome-Dependent Regulation of Distinct Metabolic States During Long-Term Culture of Human iPSC-Derived Cardiomyocytes. Circ. Res. 125, 90–103 (2019). 11. Feyen, D. A. M. et al. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Rep. 32, 107925 (2020). 12. Chirico, N. et al. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res. Ther. 13, 531 (2022). 13. Hu, D. et al. Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA. Circ. Res. (2018) doi:10.1161/CIRCRESAHA.118.313249. 14. Paredes, A. et al. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 618, 365–373 (2023). 15. Peters, M. C. et al. Metabolic Maturation Increases Susceptibility to Hypoxia-induced Damage in Human iPSCderived Cardiomyocytes. Stem Cells Transl. Med. 11, (2022). 16. Maurya, S. et al. Outlining cardiac ion channel protein interactors and their signature in the human electrocardiogram. Nature Cardiovascular Research 2, 673–692 (2023). 17. Ottaviani, D., Ter Huurne, M., Elliott, D. A., Bellin, M. & Mummery, C. L. Maturing differentiated human pluripotent stem cells in vitro: methods and challenges. Development 150, (2023). 18. Marchiano, S. et al. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. Cell Stem Cell 30, 396–414.e9 (2023). 19. Kucera, J. P., Prudat, Y., Marcu, I. C., Azzarito, M. & Ullrich, N. D. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes. Frontiers in cell and developmental biology 3, (2015). 20. Poelzing, S. & Rosenbaum, D. S. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am. J. Physiol. Heart Circ. Physiol. 287, (2004). 21. Vreeker, A. et al. Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS One 9, (2014). 22. Hinson, J. T. et al. Titin Mutations in iPS cells Define Sarcomere Insufficiency as a Cause of Dilated Cardiomyopathy. Science 349, 982 (2015). 23. Kumar, A., He, S. & Mali, P. Systematic discovery of transcription factors that improve hPSC-derived cardiomyocyte maturation via temporal analysis of bioengineered cardiac tissues. APL bioengineering 7, (2023).

RkJQdWJsaXNoZXIy MTk4NDMw