Renée Maas

378 Chapter 13 73. Takeda, M. et al. Development of In Vitro Drug-Induced Cardiotoxicity Assay by Using Three-Dimensional Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells. Tissue Eng. Part C Methods 24, (2018). 74. Archer, C. R. et al. Characterization and Validation of a Human 3D Cardiac Microtissue for the Assessment of Changes in Cardiac Pathology. Sci. Rep. 8, 1–15 (2018). 75. Haghighi, K. et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc. Natl. Acad. Sci. U. S. A. 103, 1388–1393 (2006). 76. Badone, B. et al. Characterization of the PLN p.Arg14del Mutation in Human Induced Pluripotent Stem CellDerived Cardiomyocytes. Int. J. Mol. Sci. 22, (2021). 77. Vafiadaki, E., Haghighi, K., Arvanitis, D. A., Kranias, E. G. & Sanoudou, D. Aberrant PLN-R14del Protein Interactions Intensify SERCA2a Inhibition, Driving Impaired Ca Handling and Arrhythmogenesis. Int. J. Mol. Sci. 23, (2022). 78. Liu, Y., Chen, J., Fontes, S. K., Bautista, E. N. & Cheng, Z. Physiological and pathological roles of protein kinase A in the heart. Cardiovasc. Res. 118, 386 (2022). 79. Kuschel, M. et al. Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Am. J. Physiol. 276, (1999). 80. Vostrikov, V. V., Soller, K. J., Ha, K. N., Gopinath, T. & Veglia, G. Effects of naturally occurring arginine 14 deletion on phospholamban conformational dynamics and membrane interactions. Biochim. Biophys. Acta 1848, 315–322 (2015). 81. Qin, J. et al. Structures of PKA–phospholamban complexes reveal a mechanism of familial dilated cardiomyopathy. (2022) doi:10.7554/eLife.75346. 82. Kim, J. et al. Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 112, (2015). 83. Vostrikov, V. V., Soller, K. J., Ha, K. N., Gopinath, T. & Veglia, G. Effects of naturally occurring arginine 14 deletion on phospholamban conformational dynamics and membrane interactions. Biochim. Biophys. Acta 1848, (2015). 84. Cuello, F. et al. Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Mol. Med. 13, (2021). 85. Stege, N. M. et al. DWORF Extends Life Span in a PLN-R14del Cardiomyopathy Mouse Model by Reducing Abnormal Sarcoplasmic Reticulum Clusters. Circ. Res. 133, (2023). 86. van der Zwaag, P. A. et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 14, 1199–1207 (2012). 87. Eijgenraam, T. R. et al. The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unreponsive to standard heart failure therapy. Sci. Rep. 10, (2020). 88. Xu, H.-X., Cui, S.-M., Zhang, Y.-M. & Ren, J. Mitochondrial Ca2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacol. Sin. 41, 1301 (2020). 89. Abdullah, C. S. et al. Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics. J. Am. Heart Assoc. 7, (2018). 90. De Bortoli, M. et al. Modeling incomplete penetrance in arrhythmogenic cardiomyopathy by human induced pluripotent stem cell derived cardiomyocytes. Comput. Struct. Biotechnol. J. 21, (2023). 91. Ritterhoff, J. & Tian, R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc. Res. 113, (2017). 92. Sepehrkhouy, S. et al. Distinct fibrosis pattern in desmosomal and phospholamban mutation carriers in hereditary cardiomyopathies. Heart Rhythm 14, 1024–1032 (2017). 93. Te Rijdt, W. P. et al. Myocardial fibrosis as an early feature in phospholamban p.Arg14del mutation carriers: phenotypic insights from cardiovascular magnetic resonance imaging. Eur. Heart J. Cardiovasc. Imaging 20, 92–100 (2019). 94. van der Voorn, S. M. et al. Exploring the Correlation Between Fibrosis Biomarkers and Clinical Disease Severity in PLN p.Arg14del Patients. Front Cardiovasc Med 8, 802998 (2021). 95. Fernandes, I., Funakoshi, S., Hamidzada, H., Epelman, S. & Keller, G. Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells. Nat. Commun. 14, 1–19 (2023).

RkJQdWJsaXNoZXIy MTk4NDMw