Renée Maas

379 General Discussion - hiPSC-CMs Disease Modelling and Future Perspectives 13 96. Early Mechanical Alterations in Phospholamban Mutation Carriers: Identifying Subclinical Disease Before Onset of Symptoms. JACC Cardiovasc. Imaging 14, 885–896 (2021). 97. Taha, K. et al. Optimal echocardiographic assessment of myocardial dysfunction for arrhythmic risk stratification in phospholamban mutation carriers. Eur. Heart J. Cardiovasc. Imaging 23, 1492–1501 (2022). 98. MacLennan, D. H. & Kranias, E. G. Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4, (2003). 99. Lipskaia, L., Chemaly, E. R., Hadri, L., Lompre, A.-M. & Hajjar, R. J. Sarcoplasmic reticulum Ca2+ ATPase as a therapeutic target for heart failure. Expert Opin. Biol. Ther. 10, 29 (2010). 100. Feng, J. et al. Ca2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases. Journal of Cardiovascular Development and Disease 6, (2019). 101. Kumar, M. et al. Myofilament Alterations Associated with Human R14del-Phospholamban Cardiomyopathy. Int. J. Mol. Sci. 24, (2023). 102. de Brouwer, R. et al. A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers. Eur. Heart J. 44, 4284–4287 (2023). 103. Ouwerkerk, W. et al. Multiomics Analysis Provides Novel Pathways Related to Progression of Heart Failure. J. Am. Coll. Cardiol. 82, 1921–1931 (2023). 104. A Phase II, Randomized, Double-Blind, Multicenter, Based on Standard Therapy, Placebo-Controlled Study of the Efficacy and Safety of Recombinant Human Neuregulin-1 in Patients With Chronic Heart Failure. J. Am. Coll. Cardiol. 55, 1907–1914 (2010). 105. Haghighi, K. et al. Impaired Right Ventricular Calcium Cycling Is an Early Risk Factor in R14del-Phospholamban Arrhythmias. Journal of Personalized Medicine 11, (2021). 106. Greenberg, B. et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387, 1178–1186 (2016). 107. Kamel, S. M. et al. Istaroxime treatment ameliorates calcium dysregulation in a zebrafish model of phospholamban R14del cardiomyopathy. Nat. Commun. 12, 1–15 (2021). 108. Maniezzi, C. et al. Early consequences of the phospholamban mutation PLN-R14del+/- in a transgenic mouse model. bioRxiv 2023.04.05.535536 (2023) doi:10.1101/2023.04.05.535536. 109. Karakikes, I. et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat. Commun. 6, 1–10 (2015). 110. Bish, L. T. et al. Adeno-Associated Virus (AAV) Serotype 9 Provides Global Cardiac Gene Transfer Superior to AAV1, AAV6, AAV7, and AAV8 in the Mouse and Rat. Hum. Gene Ther. 19, 1359 (2008). 111. Ambrosi, C. M., Sadananda, G., Han, J. L. & Entcheva, E. Adeno-Associated Virus Mediated Gene Delivery: Implications for Scalable in vitro and in vivo Cardiac Optogenetic Models. Front. Physiol. 10, (2019). 112. Wang, Z. et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotechnol. 23, (2005). 113. Ferla, R. et al. Non-clinical Safety and Efficacy of an AAV2/8 Vector Administered Intravenously for Treatment of Mucopolysaccharidosis Type VI. Molecular Therapy. Methods & Clinical Development 6, 143 (2017). 114. Liu, Z. et al. Comparative analysis of adeno-associated virus serotypes for gene transfer in organotypic heart slices. J. Transl. Med. 18, 1–12 (2020). 115. Lek, A. et al. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne’s Muscular Dystrophy. N. Engl. J. Med. 389, (2023). 116. Mentkowski, K. I. & Lang, J. K. Exosomes Engineered to Express a Cardiomyocyte Binding Peptide Demonstrate Improved Cardiac Retention in Vivo. Sci. Rep. 9, 10041 (2019). 117. Ishikawa, K. et al. Cardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart Failure. Mol. Ther. 22, 2038 (2014). 118. Nicolaou, P. et al. Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Circ. Res. 104, (2009). 119. Nicolaou, P., Hajjar, R. J. & Kranias, E. G. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J. Mol. Cell. Cardiol. 47, (2009).

RkJQdWJsaXNoZXIy MTk4NDMw