José Manuel Horcas Nieto

115 4 Docosahexaenoic acid prevents peroxisomal and mitochondrial protein loss in a murine hepatic organoid model 17. Diallo AH, Sayeem Bin Shahid ASM, Khan AF, et al. Childhood mortality during and after acute illness in Africa and south Asia: a prospective cohort study. Lancet Glob Health. 2022;10(5):e673-e684. doi:10.1016/S2214-109X(22)00118-8 18. Lalwani ND, Reddy MK, Qureshi SA, et al. Evaluation of Selected Hypolipidemic Agents for the Induction of Peroxisomal Enzymes and Peroxisome Proliferation in the Rat Liver. Human Toxicol. 1983;2:27-48. doi:10.1177/096032718300200103 19. Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N. Expression of Putative Fatty Acid Transporter Genes Are Regulated by Peroxisome Proliferator-activated Receptor and Activators in a Tissue-and Inducer-specific Manner*. J Biol Chem. 1998;273(27):16710-16714. doi:10.1074/jbc.273.27.16710 20. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene. EMBO Journal. 1992;11(2):433-439. doi:10.1002/j.1460-2075.1992.tb05072.x 21. Berger J, Moller DE. The Mechanisms of action of PPARS. Annu Rev Med. 2002;53:409435. doi:10.1146/annurev.med.53.082901.104018 22. Van Raalte DH, Li M, Haydn Pritchard P, Wasan KM. Peroxisome Proliferator-Activated Receptor (PPAR): A Pharmacological Target with a Promising Future. Pharm Res. 2004;21:1531-1538. doi:10.1023/b:pham.0000041444.06122.8d 23. Echeverría F, Ortiz M, Valenzuela R, Videla LA. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukot Essent Fatty Acids. 2016;114:28-34. doi:10.1016/j.plefa.2016.10.001 24. Rahmawaty S, Meyer BJ. Stunting is a recognized problem: Evidence for the potential benefits of ω-3 long-chain polyunsaturated fatty acids. Nutrition. 2020;73. doi:10.1016/j. nut.2019.110564 25. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. doi:10.1038/ nature07935 26. Kretzschmar K, Clevers H. Organoids: Modeling Development and the Stem Cell Niche in a Dish. Dev Cell. 2016;38(6):590-600. doi:10.1016/j.devcel.2016.08.014 27. Lancaster MA, Knoblich JA. Organogenesisin a dish: Modeling development and disease using organoid technologies. Science (1979). 2014;345(6194). doi:10.1126/ science.1247125 28. Schutgens F, Clevers H. Human Organoids: Tools for Understanding Biology and Treating Diseases. Published online 2019. doi:10.1146/annurev-pathmechdis 29. Zietek T, Giesbertz P, Ewers M, et al. Organoids to Study Intestinal Nutrient Transport, Drug Uptake and Metabolism – Update to the Human Model and Expansion of Applications. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.577656 30. Mun SJ, Lee J, Chung KS, Son MY, Son MJ. Effect of microbial short-chain fatty acids on cyp3a4-mediated metabolic activation of human pluripotent stem cell-derived liver organoids. Cells. 2021;10(1):1-13. doi:10.3390/cells10010126 31. Hu W, Lazar MA. Modelling metabolic diseases and drug response using stem cells and organoids. Nat Rev Endocrinol. 2022;18(12):744-759. doi:10.1038/s41574-022-00733-z

RkJQdWJsaXNoZXIy MTk4NDMw