José Manuel Horcas Nieto

149 5 Establishing a peroxisomal β-oxidation computational kinetic model to understand the effects of amino-acid restriction 10. Vanhove, G. F. et al. The CoA Esters of 2-Methyl-branched Chain Fatty Acids and of the Bile Acid Intermediates Di-and Trihydroxycoprostanic Acids Are Oxidized by One Single Peroxisomal Branched Chain Acyl-CoA Oxidase in Human Liver and Kidney. Journal of Biological Chemistry 268, 10335–10344 (1993). 11. Croes, K., Van Veldhoven, P. P., Mannaerts, G. P. & Casteels, M. α-Oxidation of 3-Methylbranched Fatty Acids: A Revised Pathway Confined to Peroxisomes. Lipids 34, (1999). 12. Reddy, J. K. & Hashimoto, T. Peroxisomal β-oxidation and peroxisome proliferatoractivated receptor α: An Adaptive Metabolic System. www.annualreviews.org (2001). 13. Liberti, M. V. et al. A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product. Cell Metab 26, 648-659.e8 (2017). 14. Haanstra, J. R. et al. Targeting pathogen metabolism without collateral damage to the host. Sci Rep 7, (2017). 15. van Eunen, K. et al. Biochemical Competition Makes Fatty-Acid β-Oxidation Vulnerable to Substrate Overload. PLoS Comput Biol 9, (2013). 16. Wu, F., Yang, F., Vinnakota, K. C. & Beard, D. A. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. Journal of Biological Chemistry 282, 24525–24537 (2007). 17. Odendaal, C. et al. Personalised modelling of clinical heterogeneity between mediumchain acyl-CoA dehydrogenase patients. BMC Biol 21, 184 (2023). 18. Kamp, F., Zakim, D., Zhang, F., Noy, N. & James Hamilton, and A. Fatty Acid Flip-Flop in Phospholipid Bilayers is Extremely Fast. Biochemistry vol. 34 https://pubs.acs.org/ sharingguidelines (1192). 19. Watkins, P. A. & Ellis, J. M. Peroxisomal acyl-CoA synthetases. Biochim Biophys Acta Mol Basis Dis 1822, 1411–1420 (2012). 20. Chornyi, S., IJlst, L., van Roermund, C. W. T., Wanders, R. J. A. & Waterham, H. R. Peroxisomal Metabolite and Cofactor Transport in Humans. Frontiers in Cell and Developmental Biology vol. 8 Preprint at https://doi.org/10.3389/fcell.2020.613892 (2021). 21. Morita, M. & Imanaka, T. Peroxisomal ABC transporters: Structure, function and role in disease. Biochimica et Biophysica Acta - Molecular Basis of Disease vol. 1822 1387–1396 Preprint at https://doi.org/10.1016/j.bbadis.2012.02.009 (2012). 22. Genin, E. C. et al. Substrate specificity overlap and interaction between adrenoleukodystrophy protein (ALDP/ABCD1) and adrenoleukodystrophy-related protein (ALDRP/ABCD2). Journal of Biological Chemistry 286, 8075–8084 (2011). 23. Imanaka, T. et al. Characterization of the 70-kDa peroxisomal membrane protein, an ATP binding cassette transporter. Journal of Biological Chemistry 274, 11968–11976 (1999). 24. van Roermund, C. W. T., Ijlst, L., Wagemans, T., Wanders, R. J. A. & Waterham, H. R. A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. Biochim Biophys Acta Mol Cell Biol Lipids 1841, 563–568 (2014). 25. Ferdinandusse, S. et al. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24, 361–370 (2015).

RkJQdWJsaXNoZXIy MTk4NDMw