José Manuel Horcas Nieto

192 Chapter 6 17. Lancaster, M. A. & Knoblich, J. A. Organogenesisin a dish: Modeling development and disease using organoid technologies. Science (1979) 345, (2014). 18. Schutgens, F. & Clevers, H. Human Organoids: Tools for Understanding Biology and Treating Diseases. (2019) doi:10.1146/annurev-pathmechdis. 19. Lee, J., Mun, S. J., Shin, Y., Lee, S. & Son, M. J. Advances in liver organoids: model systems for liver disease. Archives of Pharmacal Research vol. 45 390–400 Preprint at https://doi.org/10.1007/s12272-022-01390-6 (2022). 20. Wang, S. et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res 29, 1009–1026 (2019). 21. Sampaziotis, F. et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol 33, 845–852 (2015). 22. Wu, D. et al. Production of Functional Hepatobiliary Organoids from Human Pluripotent Stem Cells. Int J Stem Cells 14, 119–126 (2021). 23. Guan, Y. et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight 2, (2017). 24. González, F., Boué, S. & Belmonte, J. C. I. Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nat Rev Genet 12, 231–242 (2011). 25. Baxter, M. et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol 62, 581–589 (2015). 26. Harrison, S. P. et al. Liver Organoids: Recent Developments, Limitations and Potential. Frontiers in Medicine vol. 8 Preprint at https://doi.org/10.3389/fmed.2021.574047 (2021). 27. Chang, M., Bogacheva, M. S. & Lou, Y. R. Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoids. Frontiers in Cell and Developmental Biology vol. 9 Preprint at https://doi.org/10.3389/fcell.2021.748576 (2021). 28. Odendaal, C. et al. Personalised modelling of clinical heterogeneity between mediumchain acyl-CoA dehydrogenase patients. BMC Biol 21, 184 (2023). 29. Violante, S. et al. Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient. Biochim Biophys Acta Mol Cell Biol Lipids 1831, 1467–1474 (2013). 30. Wanders, R. J. A. & Waterham, H. R. Biochemistry of mammalian peroxisomes revisited. Annual Review of Biochemistry vol. 75 295–332 Preprint at https://doi.org/10.1146/ annurev.biochem.74.082803.133329 (2006). 31. Violante, S. et al. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB Journal 33, 4355–4364 (2019). 32. Vickers, S. D. et al. NUDT7 regulates total hepatic CoA levels and the composition of the intestinal bile acid pool in male mice fed a Western diet. Journal of Biological Chemistry 299, 102745 (2023). 33. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 409–412 (2011) doi:10.1038/nmeth.1591.

RkJQdWJsaXNoZXIy MTk4NDMw