José Manuel Horcas Nieto

193 6 iPSC-derived liver organoids as a tool to study Medium Chain Acyl-CoA Dehydrogenase deficienc 34. Wang, S. et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res 29, 1009–1026 (2019). 35. Maier, E. M. et al. Protein misfolding is the molecular mechanism underlying MCADD identified in newborn screening. Hum Mol Genet 18, 1612–1623 (2009). 36. Horcas-Nieto, J. M. et al. Organoids as a model to study intestinal and liver dysfunction in severe malnutrition. Biochim Biophys Acta Mol Basis Dis 1869, (2023). 37. Martines, A. C. M. F., van Eunen, K., Reijngoud, D. J. & Bakker, B. M. The promiscuous enzyme medium-chain 3-keto-acyl-CoA thiolase triggers a vicious cycle in fatty-acid beta-oxidation. PLoS Comput Biol 13, (2017). 38. Naquet, P., Kerr, E. W., Vickers, S. D. & Leonardi, R. Regulation of coenzyme A levels by degradation: the ‘Ins and Outs’. Prog Lipid Res 78, (2020). 39. Gasmi, L. & Mclennan, A. G. The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives. Biochem. J 357, 33–38 (2001). 40. Reilly, S. J., Tillander, V., Ofman, R., Alexson, S. E. H. & Hunt, M. C. The nudix hydrolase 7 is an acyl-CoA diphosphatase involved in regulating peroxisomal coenzyme A homeostasis. J Biochem 144, 655–663 (2008). 41. Vickers, S. D. et al. NUDT7 regulates total hepatic CoA levels and the composition of the intestinal bile acid pool in male mice fed a Western diet. Journal of Biological Chemistry 299, (2023). 42. Shumar, S. A., Kerr, E. W., Fagone, P., Infante, A. M. & Leonardi, R. Overexpression of Nudt7 decreases bile acid levels and peroxisomal fatty acid oxidation in the liver. J Lipid Res 60, 1005–1019 (2019). 43. Suzuki, H., Yamada, J., Watanabe, T. & Suga, T. Compartmentation of dicarboxylic acid β-oxidation in rat liver: importance of peroxisomes in the metabolism of dicarboxylic acids. Biochim Biophys Acta Gen Subj 990, 25–30 (1989). 44. Wanders, R. J. A., Komen, J. & Kemp, S. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS Journal 278, 182–194 (2011). 45. Preiss, B. & Bloch, K. Omega-Oxidation of Long Chain Fatty Acids in Rat Liver. J Bio Chem 239, (1964). 46. Ding, J. et al. The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids. Cell Rep 5, 248–258 (2013). 47. Tserng, K.-Y., Jin, S.-J., Kerr, D. S. & Hoppel, C. L. Abnormal urinary excretion of unsaturated dicarboxylic acids in patients with medium-chain acyl-CoA de hydrogenase deficiency. J Lipid Res. 31, 763–771 (1990). 48. Kølvraa, S., Gregersen, N., Christensen, E. & Hobolth, N. In vitro fibroblast studies in a patient with C6-C1- dicarboxylic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta. 126, 53–67 (1982). 49. Zhang, X. et al. Fasting induces hepatic lipid accumulation by stimulating peroxisomal dicarboxylic acid oxidation. Journal of Biological Chemistry 296, (2021). 50. Ranea-Robles, P. et al. The peroxisomal transporter ABCD3 plays a major role in hepatic dicarboxylic fatty acid metabolism and lipid homeostasis. J Inherit Metab Dis 44, 1419–1433 (2021).

RkJQdWJsaXNoZXIy MTk4NDMw